• Title/Summary/Keyword: 수치해석 모델

Search Result 3,113, Processing Time 0.029 seconds

Study on Methanol Conversion Efficiency and Mass Transfer of Steam-Methanol Reforming on Flow Rate Variation in Curved Channel (곡유로 채널을 가지는 수증기-메탄올 개질기에서 유량 변화에 따른 메탄올 전환율 및 물질 전달에 관한 연구)

  • Jang, Hyun;Park, In Sung;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.261-269
    • /
    • 2015
  • In this study, numerical analysis of curved channel steam-methanol reformer was conducted using the computational fluid dynamics (CFD) commercial code STAR-CCM. A pre-numerical analysis of reference model with a cylindrical channel reactor was performed to validate the combustion model of the CFD commercial code. The result of advance validation was in agreement with reference model over 95%. After completing the validation, a curved channel reactor was designed to determine the effects of shape and length of flow path on methanol conversion efficiency and generation of hydrogen. Numerical analysis of the curved-channel reformer was conducted under various flow rate ($10/15/20{\mu}l/min$). As a result, the characteristics of flow and mass transfer were confirmed in the cylindrical channel and curved channel reactor, and useful information about methanol conversion efficiency and hydrogen generation was obtained for various flow rate.

Evaluation of Liquefaction Model using Dynamic Centrifuge Test (포화된 경사 사질토 지반의 액상화 수치모델 거동평가)

  • Lee, Jin-Sun;Lee, Sang-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.31-42
    • /
    • 2022
  • This study verified numerical analysis of the liquefaction phenomenon using LEAP-2017 international round-robin centrifuge test results. Dynamic centrifuge test is performed by applying a 1 Hz tapered sine wave to the model soil deposit, which was formed under a water table in a surface slope of 5° using Ottawa F-65 sand. A numerical model was made on a prototype scale and analyzed using the finite difference method in 2D and 3D conditions. The analyses were verified for acceleration and pore-water pressure histories with depth and residual displacement. Verification results revealed that all numerical liquefaction models agree reasonably with the test result for acceleration histories but not for pre-water pressure histories. Numerical analyses showed much smaller residual displacement than the centrifuge test. Thus, it is necessary to compare the results of numerical analysis with the centrifuge test performed by other institutes in the future.

Computational Analysis of Airflow in Upper Airway for Drug Delivery of Asthma Inhaler (천식 흡입기의 약물전달을 위한 상기도내의 유동해석)

  • Lee, Gyun-Bum;Kim, Sung-Kyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Drug delivery in human upper airway was studied by the numerical simulation of oral airflow. We created an anatomically accurate upper airway model from CT scan data by using a medical image processing software (Mimics). The upper airway was composed of oral cavity, pharynx, larynx, trachea, and second generations of branches. Thin sliced CT data and meticulous refinement of model surface under the ENT doctor's advice provided more sophisticated nasal cavity models. With this 3D upper airway models, numerical simulation was conducted by ANSYS/FLUENT. The steady inspiratory airflows in that model was solved numerically for the case of flow rate of 250 mL/s with drug-laden spray(Q= 20, 40, 60 mL/s). Optimal parameters for mechanical drug aerosol targeting of predetermined areas was to be computed, for a given representative upper airways. From numerical flow visualization results, as flow-rate of drug-laden spray increases, the drag spray residue in oral cavity was increased and the distribution of drug spray in trachea and branches became more homogeneous.

The Prediction of Failure Load for an Unsymmetrically Stiffened Circular Composite Spar (비대칭으로 보강된 복합재 원형 스파의 파손하중 예측)

  • Kim, Sung Joon;Lee, Donggeon;Park, Sang Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.505-511
    • /
    • 2020
  • The circular composite tubes have been used as a main spar of HALE-UAV(High Altitude Long Endurance-Unmanned Air Vehicle). In this paper, an analytical model is presented for the prediction of the failure load of unsymmetrically stiffened circular spar using a modified Brazier approach. This model was used to predict the moment carrying capacity of the unsymmetrically stiffened circular spar. From the results, we can know that a stiffened cap placed in the top sector of a spar increased the bending capabilities. Four point bending tests were conducted to estimate the effect of the cap on the failure load and compared with the proposed model. And numerical simulations were performed to analyze the behavior of stiffened circular spar. Comparisons of the results from the proposed model with those from experiments and numerical modes show good correlation.

CFD validation for subcooled boiling under low pressure (저압에서의 과냉각 비등 현상에 대한 CFD의 유효성 검토)

  • Choi, Yong-Seok;Kim, You-Taek;Lim, Tae-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.275-281
    • /
    • 2016
  • Subcooled boiling under low pressure was numerically investigated using computational fluid dynamics(CFD). The wall boiling model was used for simulating the subcooled boiling; this model requires sub-models consisting of bubble departure diameter, nucleation site density and bubble departure frequency. The CFD code CFX provides the default models based on experimental data. Because these models are mostly developed under high pressure conditions, it would not be predicted well in low pressure conditions. Thus in this study, CFD validation for subcooled boiling under low pressure was analyzed. The numerical results were compared with experimental data from published paper. Simulations were performed with mass flux ranging from 250 to $750kg/m^2s$, heat flux ranging from 0.37 to $0.77MW/m^2$ and constant outlet pressure of 0.11 MPa. Employing the empirical correlation developed under low pressures could increase the accuracy of numerical analysis.

Analysis of Exhaust Flow of a Large Scale Fire Calorimeter using CFD Model (CFD 모델을 이용한 화재용 열량계의 유동해석)

  • Kim, Sung-Chan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.53-58
    • /
    • 2010
  • 발열량은 화재현상을 이해하고 화재의 위험도를 평가하는데 있어서 가장 기본이 되는 물리량으로 화재강도를 나타내는 척도로 인식되고 있다. 발열량의 신뢰성은 화재 물성이나 공간화재 특성의 이해뿐만 아니라 화재해석을 통한 위험성 평가에 있어서 중요한 요소이기 때문에 측정의 신뢰성이 매우 중요하다. 본 연구에서는 수치해석 모델을 통하여 화재 발열량계의 배기덕트 구조에 따른 내부 유동특성을 파악하고자 한다. 해석결과를 바탕으로 각 측정점의 위치에 따른 상태오차 정도를 분석하고 산소소모법에 의해 계산된 발열량을 비교한다. 화재 발열량계의 수치해석을 통하여 발열량 산정의 오차특성을 평가함으로써 발열량계 설계 과정을 최적화하고 효과적인 발열량계 운영을 위한 기초자료를 얻는데 기여하고자 한다.

  • PDF

A Numerical Analysis of Flow through Open Channel Constrictions using Turbulence Model (난류모델을 이용한 개수로 급축소부 흐름의 수치해석)

  • Choe, Heung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.201-210
    • /
    • 1997
  • To analyze the flow through open-channel constrictions using $\kappa$-$\varepsilon$ turbulence mode, a numerical model is developed. The simulated results agree well with existing experimental data which attributes to the adequate input of turbulent eddy-viscosity by turbulence model. A stream function and velocity distributions enable the analysis of flow characteristics at the downstream of constriction. Turbulent eddy viscosities over channel are spatially varied with stream pattern. For the evaluation of rapidly varied flow, the eddy-viscosity input by turbulence model is required instead of the empirical effective viscosity to solve a shallow water equation.

  • PDF

Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge (Flexible guideway 교량과 자기부상열차의 동적 상호작용 해석)

  • Kim, Moon-Young;Kwon, Soon-Duck;Lee, Jun-Seok;Min, Dong-Ju;Jung, Myung-Rag
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.35-38
    • /
    • 2010
  • 본 논문에서는 flexible guideway 교량과 능동적으로 제어되는 자기부상 열차간의 동적 상호작용에 대한 수치해석 모델을 개발하였다. 중 저속 자기부상열차의 동적 응답에 대한 열차와 guideway 사이의 특성에 대한 연구를 실시하였다. 동적 지배방정식은 10자유도계의 자기부상열차 모델, guideway구조물의 모드 특성과 UTM02 부상제어모델을 결합함으로써 유도하였다. 수치해석으로부터 열차의 부상공극은 차량의 속도, 트랙조도의 영향을 크게 받는 것을 발견하였다.

  • PDF

Analysis and Simulation of Ultrasonic Wave Propagation and Scattering in Unidirectional Fiber Composites (단일방향 섬유 복합재료 내의 초음파 전파 및 산란 현상의 해석과 시뮬레이션)

  • Lee, Choon-Jae;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.269-276
    • /
    • 2001
  • Ultrasonic testing of composite materials is much more difficult than that of isotropic materials, because of the beam skew phenomenon caused by their elastic anisotropy. An established analytical method exists for elastic wave propagation in anisotropic media as a result of previous research efforts. Yet, due to the complexity of the analytical method, solution of real problems must resort to the numerical method. In this work, analytical solutions have first been obtained for the wavefield due to a point source in a unidirectional fiber-reinforced composite, which may be modeled as transversely isotropic. Then, the corresponding numerical solutions have been obtained using the mass-spring lattice model(MSLM). The two solutions have agreed well with each other. Other problems such as reflection from free boundaries and scattering from cracks have also been solved numerically, and the results have been investigated from the viewpoint of wave mechanics. The numerical model whose validity has been confirmed by this work will be of great use in simulating ultrasonic testing of composite materials.

  • PDF

Parameter Study of Track Deformation Analysis by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 지하철 궤도 변형 해석을 위한 매개변수 연구)

  • Choi, Jung-Youl;Cho, Soo-Il;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.669-675
    • /
    • 2020
  • In this study, 3D analysis was compared in evaluating the track deformation of subway structures during adjacent excavation. For the 3D analysis model, the boundary conditions of the tunnel model and the application level of the ground water were analyzed as variables. As the result of the effects of track irregularity using the 3D model, the analysis model considering the site ground water level instead of the design values and changing the constraint of the boundary condition is more reasonable. In addition, the influence of track irregularity due to the boundary condition and load condition of the analytical model is more obvious in the factors directly affected by the longitudinal relative displacement of the rail, such as alignment, cross level and gauge irregularity. Therefore, the evaluation on track stability according to adjacent excavation work was appropriate to analysed the longitudinal deformation of the track by using 3D model that could be investigate the deformation of rail. In addition, the boundary condition and load condition(ground water level) of the numerical model was important for accurate analysis results.