• Title/Summary/Keyword: 수치항공사진

Search Result 303, Processing Time 0.025 seconds

Automatic Extraction of Buildings using Aerial Photo and Airborne LIDAR Data (항공사진과 항공레이저 데이터를 이용한 건물 자동추출)

  • 조우석;이영진;좌윤석
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.307-317
    • /
    • 2003
  • This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were 8.1cm, 24.7cm, 35.9cm, respectively.

Design and Implementation of Standard Metadata for Digital Forest Cover Type Map (수치임상도 표준 메타데이터 설계 및 구현)

  • Kim, Kyoung-Min;Kim, Cheol-Min;Kim, Tae-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.51-63
    • /
    • 2008
  • It is important to develop standard metadata to give more plentiful information about the forest cover type map and to promote distribution by National Geographic Information Clearinghouse. In this study metadata for the forest cover type map was designed based on TTAS.IS-19115 and it consisted of 10 packages and 50 elements. Also metadata editor was developed to implement metadata with standard schema and metadata viewer to service more user friendly interface. This work was about the first standard metadata for forest GIS data. So it would be a useful reference to develop metadata for other digital map concerning forest.

  • PDF

Study on the Standard for 1:25,000 Scale Digital Forest Type Map Production in Korea (1:25,000 수치임상도 제작체계 표준화 연구)

  • Kim, Kyoung-Min;Kim, Cheol-Min;Jun, Eun-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.143-151
    • /
    • 2009
  • Forest type map is a main forest thematic map which shows forest type, age class, diameter class and density. This map has been used as a base data in various fields such as forest policy decision-making, land suitability assessment and eco map production etc. But the existing map had many kinds of errors and no metadata because there was no standard for digital map production. On this study, we developed standard for digital forest type map production consisting of 33 unit processes including DB schema design, mapping process, quality control and metadata input process. Based on this standard, country-wide digital forest type map can be produced with consistent quality and standard metadata.

  • PDF

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.

Utilization of Ground Control Points using LiDAR Intensity and DSM (LiDAR 반사강도와 DSM을 이용한 지상기준점 활용방안)

  • Lim, Sae-Bom;Kim, Jong-Mun;Shin, Sang-Cheol;Kwon, Chan-O
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.37-45
    • /
    • 2010
  • AT(Aerial Triangulation) is the essential procedure for creating orthophoto and transforming coordinates on the photographs into the real world coordinates utilizing GCPs (Ground Control Point) which is obtained by field survey and the external orientation factors from GPS/INS as a reference coordinates. In this procedure, all of the GCPs can be collected from field survey using GPS and Total Station, or obtained from digital maps. Collecting GCPs by field survey is accurate than GCPs from digital maps; however, lots of manpower should be put into the collecting procedure, and time and cost as well. On the other hand, in the case of obtaining GCPs from digital maps, it is very difficult to secure the required accuracy because almost things at each stage in the collecting procedure should rely on the subjective judgement of the performer. In this study, the results from three methods have been compared for the accuracy assessment in order to know if the results of each case is within the allowance error: for the perceivable objects such as road boarder, speed bumps, constructions etc., 1) GCPs selection utilizing the unique LiDAR intensity value reflected from such objects, 2) using LiDAR DSM and 3) GCPs from field survey. And also, AT and error analysis have been carried out w ith GCPs obtained by each case.

Application of CCD Image by Direct Georeferencing (Direct Georeferencing에 의한 CCD 영상의 적용기법)

  • Song Youn Kyung;Park Woon Yong;Park Hong Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.77-88
    • /
    • 2005
  • Direct Georeferencing (DG) is based on the direct measurement of the projection centers and rotation angle of sensor through loading the GPS and INS in aircraft. The methods can offer us to acquire the exterior orientation parameters with only minimum GCPs, even the ground control process could be completely skipped. In this study, a CCD camera is simultaneously used in GPS/INS, and acquired CCD image through Direct Georeferencing produce digital orthoimage. In this process, methods of combining sensor and digital orthoimage are examined and estimated. For the comparison of the positioning accuracy digital orthoimage through Direct Georeferencing, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; one with a few GCP and the other without them. The produced maps can be used to correct or revised 1:1,000 or 1:5,000 scale maps accordingly.

A Application Method of Plotting Original Data (도화원도의 활용방안)

  • Lee, Yong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.441-448
    • /
    • 2011
  • Lately, digital restitution was became common using digital aerial photos. Therefore, we can obtain three-dimensional data. As a plotting-maker is checked by naked eye, plotting original data is very useful for making reliable three-dimensional data including contour and elevation point layers. In this study, we want to make precise and accurate digital elevation model using plotting original data. Contour and elevation point layers was extracted in digital map and break line was extracted in plotting original data. And then, compared both of results. For comparison, we selected slight slope and complex topography area like a residence area, mountain and agricultural land. We extracted break line deleting layer until obtaining ideal digital elevation model. As the results, We could extract contour, elevation points, eight road and two boundary layers using break lines. And We could obtain precise elevation model. Editing break lines, the distortion of digital elevation model could be minimized in the complex and sharp slope area.

A Study on Utilizing 1:1,000 Digital Topographic Data for Urban Landuse Classification (도시지역 토지이용분류를 위한 1:1,000 수치지형도 활용에 관한 연구)

  • Min, Sookjoo;Kim, Kyehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.149-156
    • /
    • 2006
  • Existing method of landuse classification using aerial photographs or field survey requires relatively higher amount of time and cost due to necessary manual work. Especially in urban area where the pattern of landuse is densely aggregated, a landuse classification using satellite image is more complex. In this background, this study proposes a landuse classification method to utilize 1:1,000 digital topographic data and IKONOS satellite image. To prove the possibility of this method, the method was applied to Seoul metropolitan area. The results shows the total accuracy of approximately 95% and 14 landuse classes extracted. Based on the results from the pilot study, this method is applicable to landuse classification in urban area.

Umyeon Mountain Debris Flow Movement Analysis Using Random Walk Model (Random Walk Model을 활용한 우면산 토석류 거동 분석)

  • Kim, Gihong;Won, Sangyeon;Mo, Sehwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.515-525
    • /
    • 2014
  • Recently, because of increasing in downpour and typhoon, which are caused by climate changes, those sedimentation disasters, such as landslide and debris flow, have become frequent. Those sedimentation disasters take place in natural slope. In order to predict debris flow damage range within wide area, the response model is more appropriate than numerical analysis. However, to make a prediction using Random Walk Model, the regional parameters is needed to be decided, since the regional environments conditions are not always same. This random Walk Model is a probability model with easy calculation method, and simplified slope factor. The objective of this study is to calculate the optimal parameters of Random Walk Model for Umyeon mountain in Seoul, where the large debris flow has occurred in 2011. Debris flow initiation zones and sedimentation zones were extracted through field survey, aerial photograph and visual reading of debris flow before and after its occurrence via LiDAR DEM.

Edge Response Analysis of UAV-Images Using a Slanted Target (경사 타겟을 이용한 무인항공영상의 경계반응 분석)

  • Lee, Jae One;Sung, Sang Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) photogrammetry has recently emerged as a means of obtaining highly precise and rapid spatial information due to its cost-effectiveness and high efficiency. However, current procedures or regulations for quantitative quality verification methods and certification processes for UAV-images are insufficient. In addition, the current verification method for image quality is not evaluated by an MTF (Modulation Transfer Function) analysis or edge response analysis, which can analyze the degree of contrast including image resolution, and only relies on the GSD (Ground Sample Distance) analysis. Therefore, in this study, the edge response analysis using a Slanted edge target was performed along with GSD analysis to confirm the necessity of analyzing edge response analysis in UAV-images quality analysis. Furthermore, a Matlab GUI-based software tool was developed to help streamline the edge response analysis. As a result, we confirmed the need for edge response analysis since the outputs of the edge response analysis from the same GSD had significantly different outcomes. Additionally, we found that the quality of the edge response analysis of UAV-images is proportional to the performance of the camera mounted on the UAV.