• Title/Summary/Keyword: 수치파 수조

Search Result 84, Processing Time 0.021 seconds

An Experimental Study on Performance of the Fixed-type OWC Chamber for Wave-Energy Conversion (고정식 파력발전용 OWC챔버의 성능파악을 위한 실험적 연구)

  • B.S. Hyun;P.M. Lee;D.S. Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.318-328
    • /
    • 1991
  • The present paper describes the experimental study on the fixed-type wave-energy conversion system, consisting of the OWC-type wave-energy absorbing chamber and the duct for the air turbine. For simplicity, a screen of wire mesh was employed in place of an air turbine in order to simulate its effects on OWC chamber. Experiments were performed at the towing tank in regular waves with the frequency range of 0.22-0.75Hz. Comparison wish the numerical prediction using a potential flow-based method [4] was made to validate the capability of numerical code. It was shown that the agreements between measured and calculated results are quite good, giving a confidence in prediction method. Simulation of air turbine using a wire-mesh screen was successful, at least in a qualitative sense, to investigate the inter action between the OWC chamber and an air turbine. Results also showed that the effects of a wire-mesh screen on chamber efficiency are negligible, and the present model can be effectively utilized for the practical use in ocean waves with the frequency range under 0.3Hz.

  • PDF

Study on Behaviour of Flood Wave-front Varied with Levee Breach Speed in Flat Inundation Area (평탄지형 제내지에서의 제방붕괴속도에 따른 범람홍수파 선단 거동에 관한 연구)

  • Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.537-544
    • /
    • 2017
  • An experimental study was carried out to investigate the characteristics of the propagation distance of a flood wave considering the levee failure speed in a flat inundation area. The Ritter solution for one dimensional flow was considered to formulate the experimental results and a representative form with coefficients of k and m, which consider the three dimensional flow characteristics, was applied. The experiments showed that the propagation velocity of the wave front in the inundation area was influenced by the levee breach speed as well as the initial water level, which is a significant variable representing the flood wave behavior. In addition, coefficients k and m are not constants, but variables that vary with levee breach speed. An empirical formula was also suggested using the experimental results in the form of the relationships between k and m. In this study, a large-scale experiment for flood inundation was carried out to examine the behavior of flooding in the inundated area and the relationships between the levee breach speed and wave-front propagation velocity were suggested based on the experimental results. These research results are expected to be used as the baseline data to draw a flow inundation map, establish an emergency action plan, and verify the two-dimensional numerical model.

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.

Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data (파랑에 의한 방파제 케이슨 침하 경향 및 원인 분석: 침하 계측자료를 중심으로)

  • Kim, Tae-Hyung;Nam, Jung-Man;Kim, In-Sok;Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.27-40
    • /
    • 2014
  • So far, studies on the settlement of breakwater have mainly been conducted through numerical model tests focusing on an analysis or through the laboratory wave tank tests using a scaled model. There has not been a study on the settlement that is measured in an actual breakwater structure. This study analyzed the data of settlement that has been measured in an actual caisson breakwater for a long time and the characteristics and causes of wave-induced settlement in the caisson (including beneath ground), based on qualitative aspect, were examined. The analysis revealed that wave clearly has an effect on the settlement in caisson, especially in the condition of high wave such as typhoon. Caisson settlement is caused by the liquefaction of ground, which is due to the increase of excess pore pressure, the combination of oscillatory excess pore pressure and residual excess pore water pressure, and the solidification process of ground due to dissipation of the accumulated excess pore pressure. The behavior of excess pore pressure in the ground beneath the caisson is entirely governed by the behavior of the caisson. Ground that has gone through solidification is not likely to go through liquefaction in a similar or a smaller wave condition and consequently, the possibility of settlement is reduced.