• Title/Summary/Keyword: 수치진동

Search Result 1,251, Processing Time 0.028 seconds

Application of TVD-McCormack Scheme to Analysis of Dam-Break Problems (댐붕괴 문제의 해석에 관한 TVD-McCormack기법의 적용)

  • Lee, Jong-Kyu;Kim, Tae-Kwan
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.365-374
    • /
    • 2003
  • This is a study on application of a TVD-Mccormack scheme for the computation of one-dimensional dam-break flows. The TVD scheme not only has the ability to damp out oscillations, but also does not contain terms with adjustable parameters. Moreover, the TVD-McCormack scheme does not cause any additional difficulty when dealing with the source term of the equation and retains second-order accuracy in both space and time. In this study, by appropriately designing the limiter functions, the TVD property can be achieved, and numerical oscillations near a jump discontinuities can be eliminated or reduced. Also, this numerical scheme has less computational errors when the direction of the predictor-corrector step is in the same direction as the shock wane propagation.

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

Damage Detection of Structures using Peak and Zero of Frequency Response Functions (주파수 응답함수의 피크와 제로를 이용한 구조물의 손상탐지)

  • Park, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.69-79
    • /
    • 2007
  • In this paper, a technique to detect structural damage and estimate its severity using peaks and zeros of frequency response functions (FRFs) is developed. The peaks in FRFs represent the natural frequencies of the structure and the zeros provide additional information. The characteristics of peaks and zeros are defined and the calculation procedure to obtain the peaks and zeros from the relationship between frequency response function and stiffness and mass matrices are clearly explained. A structural system identification theory which is utilizing the sensitivity of stiffness of a structural member to eigenvalues, i.e., peaks and zeros, is established. The proposed method can identify damage location and its severity, with natural and zero frequencies, by estimating structural stiffness of the structure in the process of making a analytical model The accuracy and feasibility is demonstrated by numerical models of a spring-mass system and a beam structure.

A Study on Vibration Characteristics of Plate Structures Spot-Welded with respect to Area Ratio and Distance Ratio (점용접된 판 구조물의 면적비와 거리비에 따른 진동특성 연구)

  • Han, Dong-Seop;Ahn, Sung-Chan;Ahn, Chan-Woo;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • In this Paper, the mechanical behavior of two reかangular plates spot-welded under free vibration is investigated in detail. The focus of the analysis is to evaluate the effect of thickness of reinforced plates with equivalent thickness. The results of this the investigation are compared with detailed finite element analysis end experiments of the plates spot-welded for various parameters, such as aspect ratio, arm ratio, and distance ratio of spot-welding Points. The conclusion obtained are as followed. 1. The effect thickness due to spot-weld is very large, such as 55% in comparison with area ratio of spot-welding joint is just 4.52%. 2 The effect of thickness with respect to the distance ratio is maximized when the distance ratio is 0.4.

Dependency of Dynamic Behavior of Circular Foundation on Ground and Foundation Characteristics (지반 및 원형기초의 특성이 기초의 동적거동에 미치는 영향)

  • Ahn, Jae-Hun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • The effect of characteristics of ground and circular foundation on the dynamic behavior of the foundation in vertical motion are considered using an approximated analytical solution and a finite element analysis with absorbing (consistent transmitting) boundary. The shear wave velocity of homogeneous ground affects the resonant frequency of the foundation much but has nothing to do with the maximum response amplitude at resonant frequency. The density in this case affects both the resonant frequency and the maximum response. The size and the mass of the circular foundation are related both to the resonant frequency and the maximum response. However, Poisson's ratio has very little effect on dynamic behavior of the foundation. When the ground is not homogeneous but has the layers, different formations of shear wave velocities would also change the maximum response at resonant frequency.

Stability Analysis of Beck's Column with a Tip Mass Restrained by a Spring (스프링으로 지지된 자유단에 집중질량을 갖는 Beck 기둥의 안정성 해석)

  • Li, Guangfan;Oh, Sang-Jin;Kim, Gwon-Sik;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1287-1294
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the Beck's columns with a tip spring, which carry a tip mass. The ordinary differential equation governing free vibrations of Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory Both the divergence and flutter critical loads are calculated from the load-frequency corves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the subtangential parameter, mass ratio and spring parameter.

A Study on Flame Extinction and Edge Flame Oscillation in Counterflow Diffusion Flame (대향류확산화염에서 화염소화와 에지화염진동에 관한 연구)

  • Park, Dae-Geun;Yun, Jin-Han;Park, Jeong;Keel, Sang-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.64-76
    • /
    • 2009
  • Experimental and numerical studies are conducted on the characteristics of flame extinction and edge flame oscillation in counterflow diffusion flames. The characteristics of flame extinction and edge flame oscillation are well described varying burner diameter, separation distance between two burners, global strain rate, and velocity ratio. It is verified numerically and experimentally that radial conduction heat loss significantly contributes to flame extinction and edge flame oscillation at low strain rate flames in zero- and micro-gravity. It is also shown that for appropriately small burner diameters flame extinction modes are grouped into four and these are significantly attributed to excessive radial conduction heat loss. The edge flame oscillation can be characterized well by one curve with Strouhal number and Peclet number.

Development of the Vibration Analysis Program Applying the High-Performance Numerical Analysis Library (고성능 수치해석 라이브러리를 적용한 진동해석 프로그램 개발)

  • Ko, Dou-Hyun;Boo, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.201-209
    • /
    • 2021
  • In order to evaluate the vibrational characteristics of huge finite element models such as ships and offshore structures, it is essential to perform eigenvalue analysis and frequency response analysis. However, these analyzes necessitate excessive equipment and computation time, which require the development of a high-performance analysis program. In particular, a considerable computational analysis time is required when calculating the inverse matrix in a linear system of equations and analyzing the eigenvalue analysis. Therefore, it can be improved by applying the latest high-performance library. In this paper, the vibration analysis program that enables fast and accurate analysis was developed by applying 'PARDISO', a parallel linear system of equation calculation library, and 'ARPACK', a high-performance eigenvalue analysis library. To verify the accuracy and efficiency of proposed method, we compare ABAQUS with proposed program using numerical examples of marine engineering.

Numerical Study on the Prediction of the Depth of Improvement and Vibration Effect in Dynamic Compaction Method (동다짐 공법의 개량심도 및 진동영향 예측을 위한 수치해석적 연구)

  • Lee, Jong-Hwi;Lim, Dae-Sung;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.59-66
    • /
    • 2010
  • In this study, an applicability by using the FEM was investigated for the prediction of both the depth of improvement and the vibration effect when dynamic compaction method is applied. The region was modelled by the field conditions applying dynamic compaction method and the rigid body force was applied to the dynamic load model. Predicted depth of improvement calculated by the vertical peak particle acceleration was compared and analyzed with an existing empirical equation, and the effect of groundwave by deducing the peak particle velocity from vibration sources was compared and analyzed with the results of another existing empirical equation. The results showed that the prediction of the depth of improvement has similar tendency to practice, and the vibration effect has some differences in a particular section from existing equation, but it could predict the safety distance to some degree. The analyzed results are expected to be basic data for the development of reliability of dynamic compaction design with existing empirical method.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(불규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.253-262
    • /
    • 2018
  • Oscillating Water Column (OWC) Wave Energy Converters (WEC) harness electricity through a Power-Take-Off (PTO) system from the induced-airflow by seawater oscillating inside a chamber. In general, an air chamber with a relatively small cross-sectional area is required compared to seawater chamber to obtain high-velocity air in the PTO system, and in order to simulate an accurate air flow rate in the air chamber, a three-dimensional study is required. In this study, the dynamic response of OWC-WEC that is equipped with the channel of seawater exchange for the case of irregular waves has been numerically studied. The open source CFD software, OLAFLOW for the simulation of wave dynamics to the openFOAM and FOAM-extend communities, was used to simulate the interaction between the device and irregular waves. Based on the numerical simulation results, we discussed the fluctuation characteristics of three dimensional air flow in the air-chamber, wave deformation around the structure and the seawater flow inside the channel of seawater exchange. The numerical results the maximum air flow velocity in the air-chamber increases as the Ursell value of the significant wave increases, and the velocity of airflow flowing out from the inside of air chamber to the outside is greater than the speed of flowing into the air chamber from the outside.