• Title/Summary/Keyword: 수치입력

Search Result 1,039, Processing Time 0.026 seconds

A Study on Medical Information Platform Based on Big Data Processing and Edge Computing for Supporting Automatic Authentication in Emergency Situations (응급상황에서 자동인증지원을 위한 빅데이터 처리 및 에지컴퓨팅 기반의 의료정보플랫폼 연구)

  • Ham, Gyu-Sung;Kang, Mingoo;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.87-95
    • /
    • 2022
  • Recently, with the development of smart technology, in medical information platform, patient's biometric data is measured in real time and accumulated into database, and it is possible to determine the patient's emergency situations. Medical staff can easily access patient information after simple authentication using a mobile terminal. However, in accessing medical information using the mobile terminal, it is necessary to study authentication in consideration of the patient situations and mobile terminal. In this paper, we studied on medical information platforms based on big data processing and edge computing for supporting automatic authentication in emergency situations. The automatic authentication system that we had studied is an authentication system that simultaneously performs user authentication and mobile terminal authentication in emergency situations, and grants upper-level access rights to certified medical staff and mobile terminal. Big data processing and analysis techniques were applied to the proposed platform in order to determine emergency situations in consideration of patient conditions such as high blood pressure and diabetes. To quickly determine the patient's emergency situations, edge computing was placed in front of the medical information server so that the edge computing determine patient's situations instead of the medical information server. The medical information server derived emergency situation decision values using the input patient's information and accumulated biometric data, and transmit them to the edge computing to determine patient-customized emergency situation. In conclusion, the proposed medical information platform considers the patient's conditions and determine quick emergency situations through big data processing and edge computing, and enables rapid authentication in emergency situations through automatic authentication, and protects patient's information by granting access rights according to the patient situations and the role of the medical staff.

Peak Impact Force of Ship Bridge Collision Based on Neural Network Model (신경망 모델을 이용한 선박-교각 최대 충돌력 추정 연구)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.175-183
    • /
    • 2022
  • The collision between a ship and bridge across a waterway may result in extremely serious consequences that may endanger the safety of life and property. Therefore, factors affecting ship bridge collision must be investigated, and the impact force should be discussed based on various collision conditions. In this study, a finite element model of ship bridge collision is established, and the peak impact force of a ship bridge collision based on 50 operating conditions combined with three input parameters, i.e., ship loading condition, ship speed, and ship bridge collision angle, is calculated via numerical simulation. Using neural network models trained with the numerical simulation results, the prediction model of the peak impact force of ship bridge collision involving an extremely short calculation time on the order of milliseconds is established. The neural network models used in this study are the basic backpropagation neural network model and Elman neural network model, which can manage temporal information. The accuracy of the neural network models is verified using 10 test samples based on the operating conditions. Results of a verification test show that the Elman neural network model performs better than the backpropagation neural network model, with a mean relative error of 4.566% and relative errors of less than 5% in 8 among 10 test cases. The trained neural network can yield a reliable ship bridge collision force instantaneously only when the required parameters are specified and a nonlinear finite element solution process is not required. The proposed model can be used to predict whether a catastrophic collision will occur during ship navigation, and thus hence the safety of crew operating the ship.

A Study on the Application of FLO-2D Model for Analysis of Debris Flow Damage Area (토석류 피해지역 분석을 위한 FLO-2D 모형의 적용에 관한 연구)

  • Jo, Hang-Il;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.2
    • /
    • pp.37-44
    • /
    • 2022
  • As the frequency of torrential rains and typhoons increases due to climate change, the frequency of occurrence of debris flow is also increasing. In particular, in the case of Kangwon-do, the occurrence of damage caused by mountain disasters is increasing as it has a topographical characteristic where the mountains and the coast are in contact. In order to analyze the flow characteristics in the sedimentary part of the debris flow, input data were constructed through numerical maps and field data, and a two-dimensional model, FLO-2D, was simulated. The damaged area was divided into the inflow part of the debris flow, the village center, and the vicinity of the port, and the flow center and flow velocity of the debris flow were simulated and compared with field survey data. As a result, the maximum flow depth was found to be 2.4 m at the debris flow inlet, 2.7 m at the center of the village, and 1.4 m at the port adjacent to the port so the results were similar when compared to the field survey. And in the case of the maximum flow velocity, it was calculated as 3.6 m/s at the debris flow inlet, 4.9 m/s in the center of the village and 1.2 m/s in the vicinity of the port, so It was confirmed that the maximum flow center occurred in the section where the maximum flow rate appeared.

Development of Dolphin Click Signal Classification Algorithm Based on Recurrent Neural Network for Marine Environment Monitoring (해양환경 모니터링을 위한 순환 신경망 기반의 돌고래 클릭 신호 분류 알고리즘 개발)

  • Seoje Jeong;Wookeen Chung;Sungryul Shin;Donghyeon Kim;Jeasoo Kim;Gihoon Byun;Dawoon Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.126-137
    • /
    • 2023
  • In this study, a recurrent neural network (RNN) was employed as a methodological approach to classify dolphin click signals derived from ocean monitoring data. To improve the accuracy of click signal classification, the single time series data were transformed into fractional domains using fractional Fourier transform to expand its features. Transformed data were used as input for three RNN models: long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (BiLSTM), which were compared to determine the optimal network for the classification of signals. Because the fractional Fourier transform displayed different characteristics depending on the chosen angle parameter, the optimal angle range for each RNN was first determined. To evaluate network performance, metrics such as accuracy, precision, recall, and F1-score were employed. Numerical experiments demonstrated that all three networks performed well, however, the BiLSTM network outperformed LSTM and GRU in terms of learning results. Furthermore, the BiLSTM network provided lower misclassification than the other networks and was deemed the most practically appliable to field data.

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.

Water temperature prediction of Daecheong Reservoir by a process-guided deep learning model (역학적 모델과 딥러닝 모델을 융합한 대청호 수온 예측)

  • Kim, Sung Jin;Park, Hyungseok;Lee, Gun Ho;Chung, Se Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.88-88
    • /
    • 2021
  • 최근 수자원과 수질관리 분야에 자료기반 머신러닝 모델과 딥러닝 모델의 활용이 급증하고 있다. 그러나 딥러닝 모델은 Blackbox 모델의 특성상 고전적인 질량, 운동량, 에너지 보존법칙을 고려하지 않고, 데이터에 내재된 패턴과 관계를 해석하기 때문에 물리적 법칙을 만족하지 않는 예측결과를 가져올 수 있다. 또한, 딥러닝 모델의 예측 성능은 학습데이터의 양과 변수 선정에 크게 영향을 받는 모델이기 때문에 양질의 데이터가 제공되지 않으면 모델의 bias와 variation이 클 수 있으며 정확도 높은 예측이 어렵다. 최근 이러한 자료기반 모델링 방법의 단점을 보완하기 위해 프로세스 기반 수치모델과 딥러닝 모델을 결합하여 두 모델링 방법의 장점을 활용하는 연구가 활발히 진행되고 있다(Read et al., 2019). Process-Guided Deep Learning (PGDL) 방법은 물리적 법칙을 반영하여 딥러닝 모델을 훈련시킴으로써 순수한 딥러닝 모델의 물리적 법칙 결여성 문제를 해결할 수 있는 대안으로 활용되고 있다. PGDL 모델은 딥러닝 모델에 물리적인 법칙을 해석할 수 있는 추가변수를 도입하며, 딥러닝 모델의 매개변수 최적화 과정에서 Cost 함수에 물리적 법칙을 위반하는 경우 Penalty를 추가하는 알고리즘을 도입하여 물리적 보존법칙을 만족하도록 모델을 훈련시킨다. 본 연구의 목적은 대청호의 수심별 수온을 예측하기 위해 역학적 모델과 딥러닝 모델을 융합한 PGDL 모델을 개발하고 적용성을 평가하는데 있다. 역학적 모델은 2차원 횡방향 평균 수리·수질 모델인 CE-QUAL-W2을 사용하였으며, 대청호를 대상으로 2017년부터 2018년까지 총 2년간 수온과 에너지 수지를 모의하였다. 기상(기온, 이슬점온도, 풍향, 풍속, 운량), 수문(저수위, 유입·유출 유량), 수온자료를 수집하여 CE-QUAL-W2 모델을 구축하고 보정하였으며, 모델은 저수위 변화, 수온의 수심별 시계열 변동 특성을 적절하게 재현하였다. 또한, 동일기간 대청호 수심별 수온 예측을 위한 순환 신경망 모델인 LSTM(Long Short-Term Memory)을 개발하였으며, 종속변수는 수온계 체인을 통해 수집한 수심별 고빈도 수온 자료를 사용하고 독립 변수는 기온, 풍속, 상대습도, 강수량, 단파복사에너지, 장파복사에너지를 사용하였다. LSTM 모델의 매개변수 최적화는 지도학습을 통해 예측값과 실측값의 RMSE가 최소화 되로록 훈련하였다. PGDL 모델은 동일 기간 LSTM 모델과 동일 입력 자료를 사용하여 구축하였으며, 역학적 모델에서 얻은 에너지 수지를 만족하지 않는 경우 Cost Function에 Penalty를 추가하여 물리적 보존법칙을 만족하도록 훈련하고 수심별 수온 예측결과를 비교·분석하였다.

  • PDF

Applicability of the WASP8 in simulating river microplastic concentration (WASP8 모형의 하천 미세플라스틱 모의 적용성 검토)

  • Kim, Kyungmin;Park, Taejin;Jeong, Hanseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.337-345
    • /
    • 2023
  • Monitoring river microplastics is a challenging task since it is a time-consuming and high-cost process. The use of a physical model to have a better understanding of river microplastics' behaviors can complement the challenging monitoring process. However, there have been very limited studies on modeling river microplastics. In this study, therefore, we evaluated the applicability of one commonly used river water quality model, i.e., the Water Quality Analysis Simulation Program (WASP), in simulating the microplastic concentration in the river environment. We simulated the microplastic concentration in the Anyangcheon stream using the WASP's biochemical oxygen demand (BOD) and suspended solid (SS) variables as possible surrogate variables for the microplastics. Simulation analyses indicate that the SS state variable performs better than the BOD state variable to mimic the observed concentrations of microplastics. This is because of the characteristics of each water quality parameter; the BOD variable, a biochemical indicator, is inappropriate for modeling the behaviors of microplastics, which have generally constant biochemical features. In contrast, the SS variable, which has similar physical behaviors, followed the observed patterns of the microplastic concentrations well. To build a more advanced and accurate model for simulating the microplastic concentration, comprehensive and long-term monitoring studies of the river microplastics under different environmental conditions are needed, and the unit of microplastic concentration should be carefully addressed before its modeling application.

Estimation of Measure of Alarmness of Drivers in Ubiquitous Transport Based on Fuzzy Set Theory (퍼지이론에 기초한 유비쿼터스 교통시대 첨단차량 운전자의 불안감도 산정)

  • Park, Hee Je;Bae, Sang Hoon;Kim, Young Seup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.11-19
    • /
    • 2008
  • Currently, existing car following models among several basic systems of advanced vehicle systems are almost developed related to the physical relation between two vehicles except for the driver's behavior or environmental factors. But the consideration of driver's character and environmental factors on driving are very essential factors for actual application. Hence, we suggested calibrating the degree of driver's discomfort on driving that is the former study to develop a new car following model of advanced vehicle to use in actuality. The degree of driver's discomfortness (Measure-of-Alarmness; MOA)is measured related to the relationship between the following vehicle and the preceding vehicle, the environmental factors and driver's characters in ubiquitous traffic. We made up questions to drivers to obtain the general and the objective measurement of driver's MOA. And the fuzzy logic model for measurement of MOA was constructed based on the results of survey. We verified the suitability of fuzzy logic model through the computation of MOA with several scenarios. And we measured the quantitative degree of driver's discomfortness on car following related to several factors which affect drivers. In accordance with this study, development of car following model applying driver's MOA will promote the actual application of advanced vehicle more effectively than the existing models. Finally, we thought the measurement of driver's MOA will be applied significantly to evaluate safety and comfort of drivers on driving.

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Calculating Sea Surface Wind by Considering Asymmetric Typhoon Wind Field (비대칭형 태풍 특성을 고려한 해상풍 산정)

  • Hye-In Kim;Wan-Hee Cho;Jong-Yoon Mun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.770-778
    • /
    • 2023
  • Sea surface wind is an important variable for elucidating the atmospheric-ocean interactions and predicting the dangerous weather conditions caused by oceans. Accurate sea surface wind data are required for making correct predictions; however, there are limited observational datasets for oceans. Therefore, this study aimed to obtain long-period high-resolution sea surface wind data. First, the ERA5 reanalysis wind field, which can be used for a long period at a high resolution, was regridded and synthesized using the asymmetric typhoon wind field calculated via the Generalized Asymmetric Holland Model of the numerical model named ADvanced CIRCulation model. The accuracy of the asymmetric typhoon synthesized wind field was evaluated using data obtained from Korea Meteorological Administration and Japan Meteorological Administration. As a result of the evaluation, it was found that the asymmetric typhoon synthetic wind field reproduce observations relatively well, compared with ERA5 reanalysis wind field and symmetric typhoon synthetic wind field calculated by the Holland model. The sea surface wind data produced in this study are expected to be useful for obtaining storm surge data and conducting frequency analysis of storm surges and sea surface winds in the future.