• Title/Summary/Keyword: 수축 저감

Search Result 232, Processing Time 0.021 seconds

Reduction of Shear Strength of Railway Roadbed Materials with Freezing-thawing Cycle (동결융해 반복에 따른 철도노반재료의 전단강도 변화)

  • Choi, Chan yong;Shin, Eun chul;Kang, Hyoun Hoi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.13-21
    • /
    • 2011
  • In seasonal frozen areas with climatic features, which have a temperature difference in the winter and thawing season, changes of mechanical properties of the soil in the zone could be seen between the freezing and thawing surface. In particular, in soil with many fine particles, a softening of the roadbed usually occurs from frost and thawing actions. The lower bearing capacity is a rapidly progressive the softening of roadbed, and occurred a mud-pumping by repeated loading. In this study, the three kind of sandy soil with contents of fine particles were conducted by directly shear box test with the number of cyclic in freeze-thawing and the water content of soil. Subsequently, the relationship between the shear strength and freeze-thaw cycling time was obtained. The shear strength was decreased with the increase of the freeze-thaw cycling time. A shear stress deterioration of the soil with power function modal is proposal.

Evaluation of Engineering Properties in Synthetic Polymer-Silica Sol Grout (합성폴리머 실라카졸 그라우트의 공학적 특성 평가)

  • Jang, Seong-Min;Jung, Hyuk-Sang;Kim, Jeong-Han;Min, Byung-Chan;Lee, Byeong-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • The engineering characteristics of synthetic polymer-silica sol, which has the effect of reducing leakage, was evaluate and compared with typical grouting material, the water glass-based SGR injection material in this study. The result of the laboratory tests on strength and durability about the synthetic polymer-silica sol showed more than twice as high as LW-based injection materials in uniaxial compressive strength, significantly lower values in shrinkage rate and permeability. The result of pH was less than 8.5 (the drinking water quality standard). As a result of the leaching test, the Na2O elution amount of the synthetic polymer-silica sol was measured to be 3 to 4 times smaller than that of the water glass grout. These results be assumed that the synthetic polymer-silica sol has better durability and permeability than those of the typical water glass-based grout.

Strength Properties According to the Conditions of Low Carbon Inorganic Composite Using Industrial By-product (산업부산물을 사용한 저탄소 무기결합재의 조건별 강도특성)

  • Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2012
  • The purpose of this study is to examine the potential for reducing the environmental load and $CO_2$ gas when cement is produced by using cement substitutes. These substitutes consisted of blast furnace slag, red mud and silica fume, which were industrial by-products. The most optimum mix was derived when alkali accelerator was added to low carbon inorganic composite mixed with industrial by-product at room temperature. It is determined that hardened properties and the results of compressive strength tests changed based on CaO content, Si/Al, the mixing ratio and the amount of alkali accelerator, curing conditions and W/B. The results of test analysis suggest that the optimum mix of low carbon inorganic composite is CaO content 30%, Si/Al 4, the mixed ratio of alkali accelerator $(NaOH:Na_2SiO_3)$ 50g:50g, the amount of alkali accelerator 100g and W/B 31%. In addition, if contraction is complemented, low carbon inorganic composite with superior performance could be developed.

Study on the Thickness Effect of the Separator for Lithium Secondary Batteries (리튬이차전지용 분리막의 두께에 따른 특성 연구)

  • Kim, Sang Woo;Seok, Ji-Hoo;Kim, Byung-Hyun Daniel;Cho, Hee-Min;Cho, Kuk Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • There is increasing demand on the reducing the weight and the volume of the major components in lithium secondary battery to improve energy density. Separator not only provides pathway for lithium ion movement but also prevents direct contact between anode and cathode. Herein we fabricated polyethylene separator by varying biaxial stretching ratio to obtain membrane thickness of 16, 12, and $9{\mu}m$. Mechanical and thermal properties of the separator with different thickness were investigated. Also rate capability and charge-discharge cycle property up to 500 cycles were studied using coin type full-cell with $LiCoO_2$ and graphite as a cathode and an anode, respectively. All the cells using separator with different thickness demonstrated excellent capacity retention after 500cycles (around 80%). Considering the rate capability, cell using separator with thickness of $9{\mu}m$ showed best performance. Interestingly, separator thickness of $9{\mu}m$ was more resistant to heat contraction compared to that of $16{\mu}m$ separator.

Properties of Non-Sintered Hwangtoh Mortar Using Eco-Friendly Inorganic Binding Material (친환경 무기결합재를 이용한 비소성 황토모르타르의 특성)

  • Heo, Jun-Oh;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • A number of studies on eco-friendly and healthy building materials are being conducted as modern people are becoming more conscious about health and the environment they live in. Among those materials, studies on Hwangtoh are the most prevalent but due to its strength, crack coming from drying shrinkage, and susceptibility to water, the usage of Hwangtoh is incomplete and limited to be used as a common building material. Cement concrete, considered as one of the most widely used building materials, is extensively used in construction because it is economical, easily accessible and moldable and has proper compressive strength. Due to carbon dioxide created in the process of making cement concrete, it is recognized as pollution. Accordingly, there are a lot of studies on reduction of carbon dioxide in cement concrete industry. There are increasing numbers of researches as well as developments on Hwangtoh or traditional construction materials used in South Korea to reduce the environmental problems. Therefore, this study suggests the basic features of the construction material that can replace cement concrete in the future with the non-sindtered cement mixed with non-sintering hwangtoh which is made with the furnace slag and multiple stimulants.

Strength Properties of Concrete According to Types of High Early Strength Cement and Curing Method (조강형 시멘트의 종류 및 양생방법에 따른 콘크리트의 강도특성)

  • Chang, Chun-Ho;Lee, Wang-Sup;Jung, Yong-Wook;Chung, Youn-In
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.76-84
    • /
    • 2017
  • This study selected a method which uses high early strength cement as a way to reduce the curing time and curing energy source of concrete secondary products and reviewed the improvement in the initial strength of concrete secondary products setting the target strength of the concrete capable of removing the form to 15MPa and the curing time to 6 hours. As a result of the test, the only specimen which achieved the form removal strength of 15 MPa only through atmospheric curing within the target curing time of 6hours was ACC-100, and the specimens of TRC-100 and TRC-50 satisfied the values of 6 hours and 15MPa through steam curing. However, we could see that it was difficult to secure workability in the case of the specimen of ACC-100 due to its high rapid setting property and a retarder such as anhydrous citric acid was required to be used to improve the workability. When we look into the pattern following changes in the water to binder ratio, while, in the case of stream curing, OPC-100, TRC-100, and TRC-50 were all found to satisfy achievement of the form removal strength within 6hours as the water to binder ratio decreased, in the case of atmospheric curing, TRC-100, and TRC-50 achieved 15MPa within 12hours.

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.

A study on the treatment of external water pressure for the water pressure tunnel at the structural analysis of concrete lining (압력도수터널 콘크리트 라이닝 구조 계산시 외수압 처리에 관한 연구)

  • Lee, Hyeon-Sub;Lee, Young-Joon;Seo, Seung-Woo;Hwang, Young-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.653-664
    • /
    • 2015
  • When the structural analysis is performed for the concrete lining of the water pressure tunnel, many parameters are considered such as relaxed ground loads, internal water pressure, external water pressure, the shrinkage of the concrete lining, grouting pressure, etc. But, there are no standards and manuals for the structural analysis for the concrete lining of the water pressure tunnel. Above all, the external water pressure has an much effect on the stability of tunnel. So, in case that permeability of ground is large, the external water pressure should be decreased by installation of weep hole, or reinforced ground by ground improvement grouting should be pressed by the external water pressure instead. But, when weep hole is installed to reduce the external water pressure, the many problems may me occurred. Thus, reasonable approach for treatment of the external water pressure is necessary if weep hole is not installed. Therefore, the purpose of this study is to analyze design cases and studies for treatment of the external water pressure in performing structural analysis for the concrete lining of the water pressure tunnel, and to find reasonable method for tunnel lining modeling which is the treatment of the external water pressure according to permeability of ground and consequently the design of ground improvement grouting.

Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods (잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.536-544
    • /
    • 2016
  • Recently, with the increase in the number of high rise and huge scaled buildings, ultra-high strength concrete with 80~100 MPa has been used increasingly to withstand excessive loads. Among the components of concrete, the effects of the kinds and properties of fine aggregates on the performance and economic advantages of ultra-high strength concrete need to be evaluated carefully. Therefore, this study examined the effects of the type of fine aggregates and mixing methods on the engineering properties of ultra-high strength concrete by varying the fine aggregates including limestone fine aggregate (LFA), electrical arc slag fine aggregate (EFA), washed sea sand (SFA), and granite fine aggregate (GFA) and their mixtures. Ultra-high strength concrete was fabricated with a 20 % water to binder ratio (W/B) and incorporated with 70 % of Ordinary Portland cement: 20 % of fly ash:10 % silica fume. The test results indicate that for a given superplasticizer dose, the use of LFA resulted in increases in slump flow and L-flow compared to the mixtures using other aggregates due to the improved particle shape and grading of LFA. In addition, the use of LFA and EFA led to enhanced compressive strength and a decrease in autogenous shrinkage due to the improved elastic properties of LFA and the presence of free-CaO in EFA, which resulted in the formation of C-S-H.

Crack and Time Effect on Chloride Diffusion Coefficient in Nuclear Power Plant Concrete with 1 Year Curing Period (1년 양생된 고강도 원전 콘크리트의 염화물 확산에 대한 균열 및 시간효과)

  • Chun, Ju-Hyun;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • Concrete structure for nuclear power plant is mass concrete structure with large wall depth and easily permits cracking in early age due to hydration heat and drying shrinkage. It always needs cooling water so that usually located near to sea shore. The crack on concrete surface permits rapid chloride intrusion and also causes more rapid corrosion in the steel. In the study, the effect of age and crack width on chloride diffusion is evaluated for the concrete for nuclear power plant with 6000 psi strength. For the work, various crack widths with 0.0~1.4 mm are induced and accelerated diffusion test is performed for concrete with 56 days, 180days, and 365 days. With increasing crack width over 1.0mm, diffusion coefficient is enlarged to 2.7~3.1 times and significant reduction of diffusion is evaluated due to age effect. Furthermore, apparent diffusion coefficient and surface chloride content are evaluated for the concrete with various crack width exposed to atmospheric zone with salt spraying at the age of 180 days. The results are also analyzed with those from accelerated diffusion test.