• Title/Summary/Keyword: 수집최적화

Search Result 455, Processing Time 0.026 seconds

Energy-aware Transmission Power Control for Solar Energy Harvesting Wireless sensor system and Its Effects on Network-wide Performance (태양 에너지 기반 센서 네트워크를 위한 에너지 적응형 전송파워 조절과 그에 따른 네트워크 성능 분석)

  • Kang, Minjae;Kim, Jaeung;Yang, Heejung;Noh, Dong Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.750-753
    • /
    • 2013
  • In respect of consuming energy, the optimization is the main objective in the solar energy harvesting sensor system (while battery-based sensor system aims at the minimization), due to the periodicity of solar energy. Aimed at the optimization of the network topology, we suggest 3-level transmission power control algorithm of which level is determined by the amount of residual energy on the rechargeable battery. Additionally, we experiment the effects of our scheme on network-wide performance such as the latency and the duty-cycle, and verify that our scheme shows the best performance in most of the metrics, compared to the schemes with fixed transmission power.

  • PDF

A study for implementation of wireless sensor network to optimize building environment (건물 환경 최적화를 위한 무선 센서 네트워크 구현에 대한 연구)

  • Chung, Sung-Boo;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2235-2241
    • /
    • 2009
  • RFID and USN are major technology in Ubiquitous. RFID is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders through RFID reader. USN is wireless sense network and monitoring environment conditions that is temperature, noise, pressure, oscillation. In this paper, we propose wireless sensor network system that is monitoring to optimize environment conditions.

Cost Management Optimization Based on RPA for Management Accounting (관리회계실행을 위한 RPA기반 원가관리 최적화 방안)

  • Kim, Kyung-ihl
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.8-15
    • /
    • 2020
  • Due to the advance of artificial intelligence, wide use of RPA(Robotic Process Automation) became inevitable. The purpose of this study is to seek cost management optimization based on RPA which has automatic collection of cost information, timeliness and flexibility. The cost management system based on RPA will be able to optimize and improve the cost management process through the cross-system of cost information recognition and the cloud platform. Following the review of previous researches on the benefit of the RPA-related technology along with the investigation on the problems of current cost management system, this study will suggest a way to adopt RPA to optimize cost management system for the implement of strategic management accounting to support management decision making.

Optimal Sensor Location in Water Distribution Network using XGBoost Model (XGBoost 기반 상수도관망 센서 위치 최적화)

  • Hyewoon Jang;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.217-217
    • /
    • 2023
  • 상수도관망은 사용자에게 고품질의 물을 안정적으로 공급하는 것을 목적으로 하며, 이를 평가하기 위한 지표 중 하나로 압력을 활용한다. 최근 스마트 센서의 설치가 확장됨에 따라 기계학습기법을 이용한 실시간 데이터 기반의 분석이 활발하다. 따라서 어디에서 데이터를 수집하느냐에 대한 센서 위치 결정이 중요하다. 본 연구는 eXtreme Gradient Boosting(XGBoost) 모델을 활용하여 대규모 상수도관망 내 센서 위치를 최적화하는 방법론을 제안한다. XGBoost 모델은 여러 의사결정 나무(decision tree)를 활용하는 앙상블(ensemble) 모델이며, 오차에 따른 가중치를 부여하여 성능을 향상시키는 부스팅(boosting) 방식을 이용한다. 이는 분산 및 병렬 처리가 가능해 메모리리소스를 최적으로 사용하고, 학습 속도가 빠르며 결측치에 대한 전처리 과정을 모델 내에 포함하고 있다는 장점이 있다. 모델 구현을 위한 독립 변수 결정을 위해 압력 데이터의 변동성 및 평균압력 값을 고려하여 상수도관망을 대표하는 중요 절점(critical node)를 선정한다. 중요 절점의 압력 값을 예측하는 XGBoost 모델을 구축하고 모델의 성능과 요인 중요도(feature importance) 값을 고려하여 센서의 최적 위치를 선정한다. 이러한 방법론을 기반으로 상수도관망의 특성에 따른 경향성을 파악하기 위해 다양한 형태(예를 들어, 망형, 가지형)와 구성 절점의 수를 변화시키며 결과를 분석한다. 본 연구에서 구축한 XGBoost 모델은 추가적인 전처리 과정을 최소화하며 대규모 관망에 간편하게 사용할 수 있어 추후 다양한 입출력 데이터의 조합을 통해 센서 위치 외에도 상수도관망에서의 성능 최적화에 활용할 수 있을 것으로 기대한다.

  • PDF

A Study on the Regionalization of Rainfall-Runoff Model Considering the Interrelationship between Parameters and Watershed Characteristics (매개변수와 유역특성인자의 상호연관성을 고려한 강우-유출 모형 지역화에 관한 연구)

  • Kim, Jin-Guk;Son, Kyung-Hwan;Hong, Sung-Hoon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.311-311
    • /
    • 2020
  • 가뭄·홍수 등 수재해 대응대책 수립 측면에서 유역의 자연유출량 산정은 가장 핵심적인 사항이라 할 수 있다. 우리나라는 전국적으로 수위-유량관측소를 설치하여 실시간 유출량 모니터링을 통해 수문정보를 수집하며, 주요지점을 제외한 유역에서는 주기적으로 강우-유출모형의 매개변수 최적화를 통해 산정된 장기유출량 결과를 자연유출으로 가정하여 수자원 계획 수립시 활용하고 있다. 그러나 강우-유출모형의 최적 매개변수 추정을 위해 활용되는 관측 수문자료는 상대적으로 자료의 연한이 짧고, 계절·공간적인 특성으로 인해 매우 제한적이며, 유역의 특성을 충분히 고려하지 못해 미계측유역의 매개변수 추정시 모형의 자료에서 기인한 불확실성이 크게 발생한다는 단점이 있다. 이에 본 연구에서는 관측자료에 대한 신뢰성이 유의하며, 공간적으로 고르게 분포된 12개 댐 유역을 대상으로 매개변수 지역화 연구를 수행하였다. SCEM-UA기법을 통해 GR4J 강우-유출모형의 매개변수를 최적화 하였으며, 매개변수와의 상관관계 및 선형회귀분석을 통해 유역특성인자를 선별하여 Copula 함수를 통해 지역화된 매개변수를 추정하였다. 최종적으로 본 연구에서 제시된 방법론에 대한 적합성을 평가하기 위하여 매개변수 최적화가 수행된 유역을 미계측 유역으로 가정하여 교차검증 관점에서 적합성을 검토하였으며, 통계적으로 유의한 결과가 도출되는 것을 확인하였다.

  • PDF

Web crawler designed utilizing server overhead optimization system (웹크롤러의 서버 오버헤드 최적화 시스템 설계)

  • Lee, Jong-Won;Kim, Min-Ji;Kim, A-Yong;Ban, Tae-Hak;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.582-584
    • /
    • 2014
  • Conventional Web crawlers are reducing overhead burden on the server to ensure the integrity of data optimization measures have been continuously developed. The amount of data growing exponentially faster among those data, then the data needs to be collected should be used to the modern web crawler is the indispensable presence. In this paper, suggested that the existing Web crawler and Web crawler approach efficiency comparison and analysis. In addition, based on the results, compared to suggest an optimized technique, Web crawlers, data collection cycle dynamically reduces the overhead of the server system was designed for. This is a Web crawler approach will be utilized in the field of the search system.

  • PDF

Sintering process optimization of ZnO varistor materials by machine learning based metamodel (기계학습 기반의 메타모델을 활용한 ZnO 바리스터 소결 공정 최적화 연구)

  • Kim, Boyeol;Seo, Ga Won;Ha, Manjin;Hong, Youn-Woo;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2021
  • ZnO varistor is a semiconductor device which can serve to protect the circuit from surge voltage because its non-linear I-V characteristics by controlling the microstructure of grain and grain boundaries. In order to obtain desired electrical properties, it is important to control microstructure evolution during the sintering process. In this research, we defined a dataset composed of process conditions of sintering and relative permittivity of sintered body, and collected experimental dataset with DOE. Meta-models can predict permittivity were developed by learning the collected experimental dataset on various machine learning algorithms. By utilizing the meta-model, we can derive optimized sintering conditions that could show the maximum permittivity from the numerical-based HMA (Hybrid Metaheuristic Algorithm) optimization algorithm. It is possible to search the optimal process conditions with minimum number of experiments if meta-model-based optimization is applied to ceramic processing.

Evaluation of Edge-Based Data Collection System for Key-Value Store Utilizing Time-Series Data Optimization Techniques (시계열 데이터 최적화 기법을 활용한 Key-value store의 엣지 기반 데이터 수집 시스템 평가)

  • Woojin Cho;Hyung-ah Lee;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.911-917
    • /
    • 2023
  • In today's world, we find ourselves facing energy crises due to factors such as war and climate crises. To prepare for these energy crises, many researchers continue to study systems related to energy monitoring and conservation, such as energy management systems, energy monitoring, and energy conservation. In line with these efforts, nations are making it mandatory for energy-consuming facilities to implement these systems. However, these facilities, limited by space and energy constraints, are exploring ways to improve. This research explores the operation of a data collection system using low-performance embedded devices. In this context, it proves that an optimized version of RocksDB, a Key-Value store, outperforms traditional databases when it comes to time-series data. Furthermore, a comprehensive database evaluation tool was employed to assess various databases, including optimized RocksDB and regular RocksDB. In addition, heterogeneous databases and evaluations are conducted using a UD Benchmark tool to evaluate them. As a result, we were able to see that on devices with low performance, the time required was up to 11 times shorter than that of other databases.

Development of an intelligent IIoT platform for stable data collection (안정적 데이터 수집을 위한 지능형 IIoT 플랫폼 개발)

  • Woojin Cho;Hyungah Lee;Dongju Kim;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.687-692
    • /
    • 2024
  • The energy crisis is emerging as a serious problem around the world. In the case of Korea, there is great interest in energy efficiency research related to industrial complexes, which use more than 53% of total energy and account for more than 45% of greenhouse gas emissions in Korea. One of the studies is a study on saving energy through sharing facilities between factories using the same utility in an industrial complex called a virtual energy network plant and through transactions between energy producing and demand factories. In such energy-saving research, data collection is very important because there are various uses for data, such as analysis and prediction. However, existing systems had several shortcomings in reliably collecting time series data. In this study, we propose an intelligent IIoT platform to improve it. The intelligent IIoT platform includes a preprocessing system to identify abnormal data and process it in a timely manner, classifies abnormal and missing data, and presents interpolation techniques to maintain stable time series data. Additionally, time series data collection is streamlined through database optimization. This paper contributes to increasing data usability in the industrial environment through stable data collection and rapid problem response, and contributes to reducing the burden of data collection and optimizing monitoring load by introducing a variety of chatbot notification systems.

A Design of SNS and Web Data Analysis System for Company Marketing Strategy (기업 마케팅 전략을 위한 SNS 및 Web 데이터 분석 시스템 설계)

  • Lee, ByungKwan;Jeong, EunHee;Jung, YiNa
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.195-200
    • /
    • 2013
  • This paper proposes an SNS and Web Data Analytics System which can utilize a business marketing strategy by analyzing negative SNS and Web Data that can do great damage to a business image. It consists of the Data Collection Module collecting SNS and Web Data, the Hbase Module storing the collected data, the Data Analysis Module estimating and classifying the meaning of data after an semantic analysis of the collected data, and the PHS Module accomplishing an optimized Map Reduce by using SNS and Web data involved a Businesse. This paper can utilize this analysis result for a business marketing strategy by efficiently managing SNS and Web data with these modules.