• 제목/요약/키워드: 수집로봇

검색결과 207건 처리시간 0.019초

신문기사에 나타난 장애인스포츠에 대한 인식 -의미연결망을 활용한 빅데이터 분석- (Perceptions of Disabled Sports in Newspapers Using Semantic Networks Analysis)

  • 한민규;김원경;윤지운
    • 재활복지
    • /
    • 제20권4호
    • /
    • pp.157-175
    • /
    • 2016
  • 본 연구의 목적은 텍스트 빅데이터 분석의 일종인 의미연결망을 활용하여 신문기사에서 나타나는 장애인스포츠에 대한 인식을 알아보는 것이 목적이다. 이 목적을 위하여 '장애인스포츠'를 검색어로 네이버 포탈을 이용하여 21개 언론사 745건의 기사를 수집하였으며 Krkwic 소프트웨어 프로그램을 사용하여 자료정제와 공출현 빈도를 산출하였다. 장애인스포츠에 대한 인식은 Netminer 4.0을 활용하여 연결중앙성, 매개중앙성, 위세중앙성을 지표로 분석하였다. 의미연결망 분석을 통하여 얻은 결과는 다음과 같다. 첫째, 신문기사에서 나타난 장애인스포츠를 규정하는 핵심단어는 감동, 도전, 축제, 꿈, 희망이다. 그리고 장애인스포츠의 인식을 나타내는 핵심단어는 장애유형에 따라 차이가 있다. 둘째, 장애인스포츠에 대한 인식을 장애유형별로 구분하여 분석한 결과 크게 경기력관련 인식과 감성관련 인식으로 구분할 수 있다. 구체적으로 지체장애 스포츠 대상의 경기력관련 인식은 패럴림픽, 로봇, 감동 등이며 감성관련 인식은 행복, 희망 등이다. 지적장애 스포츠 대상의 경기력관련 인식은 패럴림픽, 스페셜올림픽, 축제 등이고 감성관련 인식은 사랑, 감동 등이다. 시각장애 스포츠 대상의 경기력관련 인식은 메달, 달리기 등이며 감성관련 인식은 희망, 나눔 등이다. 결론적으로 신문기사에서 나타나는 장애인스포츠에 대한 인식은 패럴림픽, 스페셜올림픽 등의 장애인스포츠 경기대회는 장애인들의 도전과 꿈을 이룰 수 있는 축제의 장이며 경기를 통해 일반대중들에게 감동을 선사한다고 의미화 할 수 있다.

주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법 (Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity)

  • 김혜진;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.299-306
    • /
    • 2022
  • 최근 로봇이나 설비, 회로 등에 센서 내장이 보편화 되고, 측정된 센서 데이터를 학습하여 기기의 고장을 진단하기 위한 연구가 활발하게 수행되고 있다. 이러한 고장 진단 연구는 고장 상황이나 종류를 예측하기 위한 분류(Classification) 모델 개발과 정량적으로 고장 상황을 예측하기 위한 회귀(Regression) 모델 개발로 구분된다. 분류 모델의 경우, 단순히 고장이나 결함의 유무(Class)를 확인하는 반면, 회귀 모델은 무수히 많은 수치 중에 하나의 값(Value)을 예측해야 하므로 학습 난이도가 더 높다. 즉, 입력과 출력을 대응시켜 고장을 예측을 할 때, 유사한 입력값이 동일한 출력을 낸다고 결정하기 어려운 불규칙한 상황이 다수 존재하기 때문이다. 따라서 본 논문에서는 주기성을 지닌 입출력 데이터에 초점을 맞추어, 입출력 관계를 분석하고, 슬라이딩 윈도우 기반으로 입력 데이터를 패턴화 하여 입출력 데이터 간의 규칙성을 확보하도록 한다. 제안하는 방법을 적용하기 위해, 본 연구에서는 MMC(Modular Multilevel Converter) 회로 시스템으로부터 주기성을 지닌 전류, 온도 데이터를 수집하여 ANN을 이용하여 학습을 진행하였다. 실험 결과, 한 주기의 2% 이상의 윈도우를 적용하였을 때, 적합도 97% 이상의 성능이 확보될 수 있음을 확인하였다.

도시 브랜드의 전략적 활용을 위한 빅데이터 분석 : 서울시 도시 브랜드 "I SEOUL U" 사례 (Big Data Analysis for Strategic Use of Urban Brands: Case Study Seoul city brand "I SEOUL U")

  • 임혜원
    • 한국콘텐츠학회논문지
    • /
    • 제22권1호
    • /
    • pp.197-213
    • /
    • 2022
  • 본 연구에서는 서울시 도시 브랜드 I SEOUL U에 대한 인식과 평가를 분석하기 위하여 온라인 빅데이터를 대상으로 한 텍스트마이닝 분석을 수행하였다. 이를 위하여 데이터 수집 및 분석을 위한 처리 프로그램인 텍스톰(Textom)을 사용하였고 'I SEOUL U' 키워드를 분석키워드로 선정하였다. 키워드 분석 결과 I SEOUL U와 관련된 키워드는 첫째, 비즈니스와 마케팅 관련 용어로서 팝업 스토어, 갤러리, 공동 브랜드, (축제 등) 개최, 상품, 민간기업, 온라인 등이다. 둘째, 이벤트 관련 용어로서 한강, 식목일, 나무 심기, 홍대, 크리스마스, 마포구, 중구, 세종대, 축제거리 등이다. 셋째는 홍보 관련 용어로서 로봇공학박사 데니스 홍, Government, 조형물, Korea 등이었다. N gram 분석 결과에서는 서울시 브랜드로서 공익적 성격의 도시 브랜드인 I SEOUL U의 경우에도 민간 기업의 상업 활동에 많은 기여를 하는 것으로 밝혀졌다. 연결 중심성 분석에서는 비즈니스 및 마케팅, 이벤트, 홍보 등의 범주가 도출되었다. 매트릭스 분석에서는 제품 판매와 관련하여 주로 팝업 스토어의 아이템들이 많고 공동 브랜드 형태의 제품들이 개발되는 것으로 나타났다. 토픽 모델링에서는 총 10개의 토픽이 추출되었고 상업적 활용과 이벤트 축제에 관한 정보 니즈가 많은 것으로 나타났다.

재난 현장 물리적 보안을 위한 딥러닝 기반 요구조자 탐지 알고리즘 (Deep Learning Based Rescue Requesters Detection Algorithm for Physical Security in Disaster Sites)

  • 김다현;박만복;안준호
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.57-64
    • /
    • 2022
  • 화재, 붕괴, 자연재해 등의 재난 발생으로 건물 내부가 붕괴하는 경우, 기존의 건물 내부의 물리적 보안이 무력해질 확률이 높다. 이때, 붕괴 건물 내의 인명피해와 물적 피해를 최소화하기 위한 물리적 보안이 필요하다. 따라서 본 논문은 기존 연구되었던 장애물을 탐지하고 건물 내 붕괴된 지역을 탐지하는 연구와 인명피해를 최소화하기 위한 딥러닝 기반 객체 탐지 알고리즘을 융합하여 재난 상황의 피해를 최소화하기 위한 알고리즘을 제안한다. 기존 연구에서 단일 카메라만을 활용하여 현재 로봇이 있는 복도 환경의 붕괴 여부를 판단하고 구조 및 수색 작업에 방해가 되는 장애물을 탐지했다. 이때, 붕괴 건물 내 물체는 건물의 잔해나 붕괴로 인해 비정형의 형태를 가지며 이를 장애물로 분류하여 탐지하였다. 또한, 재난 상황에서 자원 중 가장 중요한 요구조자를 탐지하고 인적 피해를 최소화하기 위한 방법을 제안하고 있다. 이를 위해, 본 연구는 공개된 재난 영상과 재난 상황의 이미지 데이터를 수집하여 다양한 딥러닝 기반 객체 탐지 알고리즘을 통해 재난 상황에서 요구조자를 탐지하는 정확도를 구했다. 본 연구에서 재난 상황에 요구조자를 탐지하는 알고리즘을 분석한 결과 YOLOv4 알고리즘의 정확도가 0.94로 실제 재난 상황에서 활용하기 가장 적합하다는 것을 증명하였다. 본 논문을 통해 재난 상황의 효율적인 수색과 구조에 도움을 주며 붕괴된 건물 내에서도 높은 수준의 물리적 보안을 이룰 수 있을 것이다.

사물인터넷 기반의 실내 자율주행 시스템 (Indoor autonomous driving system based on Internet of Things)

  • 이성현;곽아은;이승혜;김태국
    • 사물인터넷융복합논문지
    • /
    • 제10권2호
    • /
    • pp.69-75
    • /
    • 2024
  • 본 논문은 터틀봇3 (TurtleBot3)를 기반으로 ROS(Robot Operating System) 환경에서 SLAM(Simultaneous Localization And Mapping)과 Navigation 기법을 적용한 사물인터넷 기반의 실내 자율주행 시스템을 제안한다. 제안한 자율주행 시스템을 실내 자율주행 휠체어 및 로봇 등에 적용 가능하다. 본 연구에서는 실내 자율주행 휠체어에 적용하여 동작을 검증하였다. 제안한 자율주행 시스템은 2가지 기능을 제공한다. 첫째, 실내 환경 정보를 수집 및 저장하고, 이를 통해 휠체어가 장애물을 인식할 수 있도록 한다. 이를 통해 만들어진 Map을 이용한 Navigation을 수행하여 탑승자가 원하는 위치까지 휠체어의 자율주행을 통해 이동할 수 있다. 둘째, OpenCV를 이용한 이미지 인식을 통해 특정 로고를 추적하여 이동하는 기능을 제공한다. 이를 통해 기관 고유 로고가 그려진 유니폼을 착용한 안내원에게 안내 서비스를 받을 수 있도록 한다. 제안한 시스템은 기존의 휠체어보다 이동성, 안전성, 사용성을 향상해 탑승자에게 편리함을 제공할 것으로 기대한다.

디지털 신기술 교육과정 개발을 위한 역량 정의 (Defining Competency for Developing Digital Technology Curriculum)

  • 이호;이주현;배준호;신우식;김희웅
    • 지식경영연구
    • /
    • 제25권1호
    • /
    • pp.135-154
    • /
    • 2024
  • 인공지능, 빅데이터, 로봇 등의 디지털 신기술 분야의 급격한 성장에 따라 정부와 교육기관들은 신기술 분야에서 요구되는 역량을 갖춘 인재 양성을 위한 교육과정들을 개발하고 있다. 그러나 교육과정 개발 및 운영의 근간이 되는 역량 개념에 대한 정의가 불분명하여 교육과정 개발에 어려움을 빚고 있다. 따라서 이 연구는 신기술 분야의 교육과정을 개발하는데 필요한 역량을 정의하는 것을 연구 목적으로 설정하였다. 이를 위해 본 연구는 문헌 연구 분석을 통해 기존 문헌에서의 역량 정의와 특성을 파악한다. 이후 신기술 분야 전문가와의 심층 인터뷰 통해 선행연구로부터 도출된 정의에 대한 검증과 추가적인 의견을 수집하고 신기술 교육과정에 적합한 역량 정의를 최종적으로 도출한다. 연구 결과, 신기술 교육과정 개발을 위한 역량은 "주어진 업무를 기대하는 수준에 맞게 효과적으로 수행하기 위해 필요한 지식 및 기술의 집합"으로 정의하였다. 또한 역량의 핵심 구성 요소인 지식 및 기술과 역량의 구성 원리를 도출하였다. 이러한 역량 정의와 특성은 신기술 분야 교육과정을 체계적이고 효과적으로 구성하는 데 기여할 뿐만 아니라, 교육과 실무 간의 격차를 줄이는 데에도 활용될 수 있다. 나아가 본 연구 결과는 지속적으로 새로운 지식과 기술이 축적되는 신기술 분야 기업들의 지식 경영 체계 구축에도 기여할 수 있다.

다중 SL-AVS 동기화 유지기법 (Multiple SL-AVS(Small size & Low power Around View System) Synchronization Maintenance Method)

  • 박현문;박수현;서해문;박우출
    • 한국시뮬레이션학회논문지
    • /
    • 제18권3호
    • /
    • pp.73-82
    • /
    • 2009
  • CMOS 카메라는 저가격, 저전력, 소형화의 장점을 이용해 휴대폰카메라, 자동차 산업, 의학 및 센서 네트워크, 로봇제어, 보안 분야의 연구에서 이용되고 있다. 특히 다중카메라(Multi-Camera)기반의 $360^{\circ}$ 전방향 카메라(Omni-directional Camera)의 소프트웨어, 통신간섭 및 지연과 복잡한 영상제어 문제가 있으며, 하드웨어 분야에서는 다중카메라의 효율적인 관리 및 소형화의 문제를 지닌다. 기존 시스템은 다수 카메라를 제어하고 카메라 영상을 송수신하기 위해 카메라별 고성능 MCU로 구성된 임베디드 시스템(embedded system)과 별도의 제어 시스템(control system) 같이 다계층 시스템(Multi-layer system)으로 구성된다. 하지만 본 시스템은 단일구조로 저성능 MCU 기반에 고속 동기화기법으로 카메라 제어 및 영상 수집이 가능하도록 SLAVS(Small size/Low power Around View System)을 제안하였다. 화각 $110^{\circ}$ CMOS 카메라 여러 대를 이용하여 $360^{\circ}$전방향을 촬영하는 저성능 MCU로 카메라의 제어 및 영상 수집이 가능한 전방향 카메라 초기모형이다. 결과적으로 저전력 CMOS 카메라 4대를 하나의 MCU에 연결하여 개별 카메라에 대한 동기 유지, 제어 및 송수신을 구현하고 이를 기존의 시스템과 비교하였다. MCU를 통한 개별 인터럽트 처리로 카메라별 동기를 제어, 기억하여 Target과 CMOS 카메라와 MCU간의 재동기를 최소화하여 데이터 전송의 효율성을 높였다. 또한, 사용자 선택에 따라 4개의 영역으로 구분된 영상을 각기 또는 하나로 Target에 제공할 수 있도록 하였다. 마지막으로 개발된 카메라 시스템의 동기 및 데이터 전송 시간, 이미지 데이터 유실 등의 성능 비교, 분석을 하였다.