• Title/Summary/Keyword: 수질환경보전법

Search Result 28, Processing Time 0.022 seconds

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

A Study on the Removal of Low-concentration Fluoride-ion by Modified Alumina (변형 알루미나를 이용한 저농도 불소이온 제거 연구)

  • Kim, So-Young;Kim, Ju-Hee;Kim, Hyoun-Ja;Cho, Young-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • The typical treatment method for fluoride polluted water is the flocculation and precipitation method which usually is capable of reducing the fluoride concentration down to the level of about 10 ppm. However, this method is no longer effective for the treatment of contaminated water having less than 10 ppm of fluorides. To remove fluorides in polluted water from the fluoride concentration between 1 to 10 ppm, several adsorbents were prepared mainly based on an activated alumina and the fluoride removal efficiencies of the adsorbents were analyzed. The best fluoride removal efficiency was obtained when the activated alumina treated by sulfuric acid was used as the adsorbent. A proper calcination temperature for the sulfuric acid contained activated alumina was found to be about $500^{\circ}C$. An adsorption isotherm for the adsorbent was also obtained by using Freundlich model. The values of the constants in Freundlich isotherm model were calculated to be K=6.63 and 1/n=0.29 based on the results obtained from the series of batch type adsorption experiments.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by $Zn^{+2}/Fe^{+2}$ Ion and Coprecipitation in Practical Plant(I) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(I))

  • Lee, Jong-Cheul;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1381-1389
    • /
    • 2007
  • Wastewater discharged by industrial activities of metal finishing and electroplating units is often contaminated by a variety of toxic or otherwise harmful substances which have a negative effects on the water environment. The treatment method of heavy metal-cyanide complexes wastewater by alkaline chlorination have already well-known($1^{st}$ Oxidation: pH 10, reaction time 30 min, ORP 350 mV, $2^{nd}$ Oxidation: ORP 650 mV). In this case, the efficiency for the removal of ferro/ferri cyanide by this general alkaline chlorination is very high as 99%. But the permissible limit of Korean waste-water discharge couldn't be satisfied. The initial concentration of cyanide was 374 mg/L(the Korean permissible limit of cyanide is 1.0 mg/L max.). So a particular focus was given to the treatment of heavy metal-cyanide complexes wastewater by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation after alkaline chlorination. And we could meet the Korean permissible limit of cyanide(the final concentration of cyanide: 0.30 mg/L) by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation(reaction time: 30 min, pH: 8.0, rpm: 240). The removal of Chromium ion by reduction(pH: 2.0 max, ORP: 250 mV) and the precipitation of metal hydroxide(pH: 9.5) is treated as 99% of removal efficiency. The removal of Copper and Nickel ion has been treated by $Na_2S$ coagulation-flocculation as 99% min of the efficiency(pH: $9.09\sim10.0$, dosage of $Na_2S:0.5\sim3.0$ mol). It is important to note that the removal of ferro/ferri cyanide of heavy metal-cyanide complexes wastewater should be employed by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation as well as the alkaline chlorination for the Korean permissible limit of waste-water discharge.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by Zn$^{+2}$/Fe$^{+2}$ Ion and Coprecipitation in Practical Plant (II) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(II))

  • Lee, Jong-Cheul;Lee, Young-Man;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.524-533
    • /
    • 2008
  • Industrial wastewater generated in the electroplating and metal finishing industries typically contain toxic free and complex metal cyanide with various heavy metals. Alkaline chlorination, the normal treatment method destroys only free cyanide, not complex metal cyanide. A novel treatment method has been developed which destroys both free and complex metal cyanide as compared with Practical Plant(I). Prior to the removal of complex metal cyanide by Fe/Zn coprecipitation and removal of others(Cu, Ni), Chromium is reduced from the hexavalent to the trivalent form by Sodium bisulfite(NaHSO$_3$), followed by alkaline-chlorination for the cyanide destruction. The maximum removal efficiency of chromium by reduction was found to be 99.92% under pH 2.0, ORP 250 mV for 0.5 hours. The removal efficiency of complex metal cyanide was max. 98.24%(residual CN: 4.50 mg/L) in pH 9.5, 240 rpm with 3.0 $\times$ 10$^{-4}$ mol of FeSO$_4$/ZnCl$_2$ for 0.5 hours. The removal efficiency of Cu, Ni using both hydroxide and sulfide precipitation was found to be max. 99.9% as Cu in 3.0 mol of Na$_2$S and 93.86% as Ni in 4.0 mol of Na$_2$S under pH 9.0$\sim$10.0, 240 rpm for 0.5 hours. The concentration of residual CN by alkaline-chlorination was 0.21 mg/L(removal efficiencies: 95.33%) under the following conditions; 1st Oxidation : pH 10.0, ORP 350 mV, reaction time 0.5 hours, 2nd Oxidation : pH 8.0, ORP 650 mV, reaction time 0.5 hours. It is important to note that the removal of free and complex metal cyanide from the electroplating wastewater should be employed by chromium reduction, Fe/Zn coprecipitation and, sulfide precipitation, followed by alkaline-chlorination for the Korean permissible limit of wastewater discharge, where the better results could be found as compared to the preceding paper as indicated in practical treatment(I).

A study on TOC monitoring and spatial distribution analysis using a spectrometer in rivers (하천에서의 분광측정기를 이용한 TOC 모니터링 및 공간분포 분석 연구)

  • Yoon, Soo Bin;Lee, Chang Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.815-822
    • /
    • 2023
  • Organic pollution is one of the most common forms of water contamination. Under the Water Quality Conservation Act, indicators for measuring organic substances include BOD, COD, and TOC. Analysis of BOD and COD is labor-intensive, and in the case of organic substances where biological decomposition is not feasible or toxic substances are present, the accuracy is often low. Therefore, the Ministry of Environment is shifting towards TOC-centric management. With advancements in sensor technology today, various parameters can be monitored using sensors. In this study, digital monitoring of river TOC using a spectrophotometer called Spectro::lyser V3 was conducted. Initially, experiments were carried out at the Andong River Experiment Center to assess the applicability of the measurement equipment. Subsequently, data collected at the confluence of the Nakdong River was analyzed for the spatial distribution of TOC using the Kriging technique. This research proposes the utilization of sensors for river TOC monitoring and spatial distribution analysis. Real-time monitoring of changes in river TOC concentration can serve as fundamental data for pollution monitoring and response. Sensor-based river monitoring offers advantages in terms of temporal resolution and real-time data acquisition. When various spatial information interpretation methods are applied, it is expected to contribute to diverse studies such as aquatic ecological health, river water source selection, and stratification analysis in the future.

Characteristics of Pollutant Washed-off from Highways with Storm Runoff Duration (아스팔트 포장 고속도로의 강우 지속시간별 오염물질 유출 경향)

  • Kim Lee-Hyun;Lee Eun-Ju;Ko Seok-Oh;Kang Hee-Man
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.99-106
    • /
    • 2006
  • During the dry periods, many types of pollutant are accumulating on the paved surface by vehicle activities. Particularly, the highways are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicles. The accumulated pollutants in highways are washed-off during a rainfall event and are highly contributing on water quality of receiving water bodies. The stormwater runoff from the highways are containing various pollutants such as metals, oil & grease and toxic chemicals originated from vehicles. Therefore, this research is performed to find pollutant characteristics in the magnitude of statistical pollutant concentrations during storm periods. During the monitoring periods, the first-flush phenomenon is visibly occurred on most storm events, which is confirmed from hydro- and pollute-graphs. The 95% confidence intervals of washed-off pollutant concentration are ranged to 154.7-257.1 mg/L for 755,138.9-197.6 mg/L for COD, 3.5-6.4 mg/L for oil & grease, 6.3-9.2 mg/L for TN and 2.3-3.31 mg/L for TP. The first flush effect is mostly occurred within initial 30 min of storm duration.

  • PDF

Distribution and remediation design of heavy metal contamination in farm-land soils and river deposits in the vicinity of the Goro abandoned mine (고로폐광산 주변 농경지 토양 및 하천 퇴적토의 중금속 오염 분포 및 복원 대책 설계)

  • 이민희;최정찬;김진원
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.89-101
    • /
    • 2003
  • River deposits and farmland soils were analyzed to investigate the pollution level of heavy metals in the vicinity of the Goro abandoned Zn-mine. Surface (0-40 cm) and subsurface (40-100 cm) soils were collected around a main river located at the lower part of the Goro mine, and analyzed by ICP-MS for Cd, Cu, Pb, Zn and Cr after 0. 1N HCI extraction and by AAS for As after IN HCI extraction. Concentrations of cadmium and lead at the surface river deposits close to the mine were over the Soil Pollution Warning Limit (SPWL), and 43% of sample sites (6 of 14 samples) were over SPWL for As suggesting that river deposits were broadly contaminated by arsenic. Results from farmland soil analysis showed that surface soils were contaminated by heavy metals, while only arsenic was over SPWL at 50% of sampling sites. Main pollution mechanism around the Goro mine was the discharge of mine tailing and waste rocks from the storage site to the river and to adjacent farmland during flood season. Pollution Grades for sample locations were prescribed by the Law of Soil Environmental Preservation, suggesting that the pollution level of heavy metals around the Goro mine was serious, and the remediation operation fur arsenic and the isolation of mine tailing and waste rocks from river and farmland should be activated to protect further contamination. The area needed to clean up was estimated from pollution distribution data and the remediation methods such as a soil washing method and a soil improvement method were considered as the further remediation operation for arsenic contaminated soils and river deposits around the Goro abandoned mine.

A Study on Leaching Characteristics of $Cr^{6+}$ in Cement Grout Materials (시멘트 그라우트재에서 $Cr^{6+}$용출특성에 관한 연구)

  • 김동우;이재영;천병식
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The aim of research is the evaluation of the $Cr^{6+}$ emission features of the liquid injection through emission experiments in varying conditions, based on a field-mixing ratio. The results showed that the content of $Cr^{6+}$ content in cement measured had an Ordinary Potland Cement (OPC) of 25.3 mg/kg, which constitute the largest portion among the other materials. Likewise, the emission experiment of homo-gel and sand-gel generally satisfied the standard of KSLT (Korea Standard Leaching Test) in waste of 1.5 mg/L, but in case of the standard of KSLT in soil the emission of OPC $Cr^{6+}$ of 4.85 mg/kg. These conditions is a little exceeded the criteria in the ‘Ga’ area in terms of Korea Soil Environmental Preservation Law. In addition, results generated by the mock-up injection facilities revealed that $Cr^{6+}$ emission increased as Water/Cement and injection pressure increased. At injection pressure higher than 4 kg/㎤, $Cr^{6+}$ emission exceeded the water preservation standard of 0.5 mg/L. Similarly, a pattern experiment of C $r^{6+}$ emission according to pH was conducted, in order to evaluate the $Cr^{6+}$ emission features of grout materials in leachate below pH 5 such as pH 4 acid rain or landfill. Results show that $Cr^{6+}$ emission dramatically increased in high acidic or basic state. It indicates that $Cr^{6+}$ emission will probably increase in an environment where grout materials are injected. On the other hand, concentration of leachate was determined in areas where grout materials are used. The results show that the concentration of emission in an ultra purity condition does not manifest intensity, and is affected in the OPC>MC>SC order. It means that the pollutants or $Cr^{6+}$ emission increases with decreasing concentration. As such, $Cr^{6+}$ emission will probably exceed the countermeasure criteria according to the types of gout materials. Similarly, high pressure or injection will cause increased $Cr^{6+}$ emission. Therefore, the selection of materials or mixing ratio should be considered in general as well as according to specific industries, based on the strength and pH of $Cr^{6+}$ emission.