• Title/Summary/Keyword: 수직 방향 진동

Search Result 164, Processing Time 0.021 seconds

Electrical properties of multilayer actuator and linear ultrasonic motor using low temperature PZW-PMN-PZT ceramics (저온소결 PZW-PMN-PZT 세라믹을 이용한 적층액츄에이터 및 선형초음파 모터의 전긱적 특성)

  • Lee, Il-Ha;Yoo, Ju-Hyun;Hong, Jae-Il;Jeong, Yeong-Ho;Yoon, Hyun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.206-206
    • /
    • 2008
  • 압전소자를 이용한 초음파 모터는 전자기적 원리로 동작하는 기존의 모터에 비해 구조가 간단하고 소형, 경량화가 가능하며 저속에서 큰 토크가 가능하고 ${\mu}m$단위 까지 정밀제어가 가능하다는 장점 등으로 인해 그 응용분야가 점차 확대되고 있다. 초음파 모터의 원리는 수평과 수직방향에서 변위가 타원형 운동을 형성하는 것이다. 따라서 선택한 타원운동의 방식에 의해서 모터의 형상이 달라진다. 초음파 모터는 액츄에이터를 사용하여 만들기 때문에 액츄에이터의 특성은 모터의 타원변위나 토크에 영향을 미친다. 단판형 액츄에이터에 비하여 적층 액츄에이터는 입력 임피던스를 낮추어 낮은 구동전압에서 구동이 가능하며 큰 변위와 토크를 발생하기 때문에 진동자의 수명 향상과 구동전압을 낮추기에 적합하다. 적층 액츄에이터는 변위량이나 응력 등을 개선하기 위해서 전기기계 결합계수(kp) 및 압전 d상수가 큰 재료가 요구되며, 고전압에서 장시간 구동 시 마찰에 의한 열손실을 감소시키기 위해 높은 기계적 품질계수(Qm)를 가져야한다. 적층 시 내부전극으로 사용하는 Pd, Pt가 함유된 전극은 가격이 비싸 제조비용을 상승시킨다. 상대적으로 값싼 Ag전극을 사용하면 비용절감을 할 수 있지만 융점이 낮아서 저온소결이 불가피하다. 따라서, 특성이 우수한 적층 액츄에이터를 제조하기 위해서 저손실, 저온소결 할 수 있는 액츄에이터 재료가 필요한 실정이다. L1-B4 혈 선혈 초음파 모터는 L1모드와 B4모드의 공진 주파수가 일치하여야 큰 변위를 얻을 수 있는데 이전의 논문에서 Atila를 이용한 시뮬레이션 결과를 분석한 봐 있다. 적층 액츄에이터의 층수를 5,7,9,11,13,15층으로 하여 L1-B4모드에서의 공진주파수를 비교한 결과 13 층일 때 두 모드가 비슷한 공진주파수를 보였고, 티원변위궤적도 다른 층수에 비해 크게 나타났다. 본 연구에서는 시뮬레이션 결과 가장 좋은 특성을 보인 13층 액츄에이터로 선형 초음파 모터를 제작하였다. 또한, 액츄에이터는 압전 및 유전특성이 우수한 저온소결 PZW-PMN-PZT세라믹을 이용하여 제작하였고, 내부전극으로 Ag전극을 사용하였다. 제작된 13 층 선형초음파모터를 가지고 프리로드 및 전압에 따른 속도를 조사하였고, 시뮬레이션 결과와 비교해 보았다.

  • PDF

A Experimental Study on the Proper Particle Gradation of Sub-base to Consider the Recent Climate Change (기후변화를 고려한 포장 보조기층의 적정입도분포에 관한 실험연구)

  • Choi, Jaesoon;Han, Nuri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.51-56
    • /
    • 2013
  • Recently, a top record of hourly-based rainfall has been changed annually and flood damages of road have increased. To solve this problem, pavements for drainage were developed and practically constructed but there was no considerations on sub-base. In this research, we proposed standard for distribution of particle size of sub-base to consider strength characteristic and drainage property. We focused to compare coefficients strength and permeability by laboratory tests. Prior to tests, 4 samples were selected under the consideration on the international or domestic design guideline. In the tests, strength characteristics were compared with resilient modulus. Also, permeability characteristics were compared with coefficient of upward and downward permeability. Resilient modulus was determined with MR test using cyclic triaxial testing system. Two permeability tests were carried out. One is variable head permeability test for downward drainage and the other is Rowe Cell test for upward drainage. In the case of Rowe Cell test, middle-sized sampler with 150mm diameter was used for this study. Consequentially, we tried to find the optimum distribution of particle size to satisfy both of strength and permeability characteristics for sub-base.

Dynamic Characteristics of Railway Structures under High-Speed Train Loading (고속열차 주행 시 동적하중을 받는 철도구조물의 진동 특성)

  • Rhee, Inkyu;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker-Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.

Experimental Investigation of Aerodynamic Force Coefficients and Flutter Derivatives of Bridge Girder Sections (교량단면의 공기력계수 및 플러터계수에 관한 실험적 연구)

  • Cho, Jae-Young;Lee, Hak-Eun;Kim, Young-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.887-899
    • /
    • 2006
  • The aim of this study is to investigate a correlation between fundamental data on aerodynamic characteristics of bridge girder cross-sections, such as aerodynamic force coefficients and flutter derivatives, and their aerodynamic behaviour. The section model tests were carried out in three stages. In the first stage, seven deck configurations were studied, namely; Six 2-edge girders and one box girder. In this stage, changes in aerodynamic force coefficients due to geometrical shape of girders, incidence angle of flow, wind directions and turbulence intensities were studied by static section model tests. In the second stage, the dynamic section model tests were carried out to investigate the relativity of static coefficients to dynamic responses. And finally, the two-dimensional (lift-torsion) aerodynamic derivatives of three bridge deck configurations were investigated by dynamic section model tests. The aerodynamic derivatives can be best described as a representation of the aerodynamic damping and the aerodynamic stiffness provided by the wind for a given deck geometry. The method employed here to extract these unsteady aerodynamic properties is known as the initial displacement technique. It involves the measurement of the decay in amplitude with time of an initial displacement of the deck in heave and torsion, for various wind speeds, in smooth flow. It is suggested that the proposed aerodynamic force coefficients and flutter derivatives of bridge girder sections will be potentially useful for the aeroelastic analysis and buffeting analysis.