• Title/Summary/Keyword: 수직결구식

Search Result 3, Processing Time 0.254 seconds

Temporary Arch Bridges Assembled by Snap-fit GFRP Decks and Bolts (첨단복합소재 데크를 볼트결합한 조립식 아치가교의 거동분석)

  • Hong, Kee-Jeung;Lee, Sung-Woo;Choi, Sung-Ho;Khum, Moon-Seoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.247-254
    • /
    • 2010
  • Due to lightweight and high durability of glass-fiber reinforced polyester (GFRP) materials, they are promising alternatives to conventional construction materials such as steel, concrete and wood. As good application examples of GFRP materials, several types of temporary arch bridges were suggested and verified by finite element analyses in our previous study where snap-fit GFRP decks were applied. In this paper, we conduct a structural performance test to verify safety and serviceability of the temporary arch bridge, where snap-fit GFRP decks are assembled by bolts. The structural problems occurred in this test are also discussed and improvement of temporary arch bridges is suggested to resolve the occurred structural problems.

Development of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 데크를 이용한 아치가교 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.217-223
    • /
    • 2008
  • Glass-fiber reinforced polyester (GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood due to light weight and high durability of GFRP composite material. If a temporary arch bridge is built by GFRP composite deck, rapid construction of the bridge and reuse of the GFRP composite deck are possible. In this paper, we develop a type of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several possible types of temporary arch bridges are suggested and verified by finite element analysis.

Design of Vertically Adjustable Transition Piece of Concrete Gravity Based Substructure for Offshore Wind Turbine (수직도 조정이 가능한 콘크리트 중력식 해상풍력 지지구조물 연결부 설계)

  • Shim, WunBo;Ahn, Jin-Young;Kwak, Dong-Woo;Bae, Kyung-Tae;Zi, Goangseup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.42-51
    • /
    • 2018
  • Verticality problem during the installation process in offshore wind turbine substructures could degrade the safety of the whole structures. Therefore, in this paper, the design of vertically adjustable transition piece(T.P.), using a PS anchor and grout of anchor socket in concrete gravity based substructure(G.B.S.), was proposed. T.P. was designed for 5MW offshore wind trubine and can adjust up to $0.5^{\circ}$ in verticality, occurred during installation. The design plan for each members and design procedure for T.P. was proposed. Then based on the proposed design, actual design targeting sea of Jeju-island was carried out. Finally, by use of non-linear 3D Finite Element Analysis(F.E.A.), evaluation of design was performed. As a result of evaluation, by checking load transfer mechanism and stress of T.P, proposed design was considered safe up to $0.5^{\circ}$ of adjustment.