본 논문은 수중 IoT 네트워크에서 센서의 전력 소비를 줄이고 네트워크의 처리량을 향상하는 수중 링크적응 방법을 제안한다. 링크 적응 방법의 하나인 AMC(Adaptive Modulation and Coding) 기술은 SNR(Signal Noise Rate)과 BER(Bit Error Rate)의 강한 상관관계를 이용하지만, 수중에 바로 적용하는 것은 어렵다. 따라서 수중 환경에 적합한 머신러닝 기반의 AMC 기술을 제안한다. 제안하는 MCS(Modulation Coding and Scheme) 예측 모델은 수중 채널 환경에서 목표 BER 값을 달성하기 위한 통신 방법을 예측한다. 예측된 통신 방법을 실제 수중 무선 통신에서 적용하는 것은 현실적으로 어렵기 때문에 본 논문에서는 높은 정확도의 BER 예측 모델을 사용해 MCS 예측 모델의 성능을 확인한다. 결과적으로 제안하는 AMC 기술은 통신 성공 확률을 올림으로써 머신러닝의 적용 가능성을 확인시켰다.
수중 IoT 네트워크에서 센서 노드는 지속적인 전력 공급이 어렵기 때문에 제한된 상황에서 소비 전력과 네트워크 처리량의 효율성이 매우 중요하다. 이를 위해 기존의 무선 네트워크에서는 SNR(Signal Noise Rate)과 BER(Bit Error Rate)의 높은 연관성을 기반으로 적응적으로 통신 파라미터를 선택하는 AMC(Adaptive Modulation and Coding) 기술을 적용한다. 하지만 본 논문의 실험 결과, 수중에서 SNR과 BER 사이의 상관 관계가 상대적으로 감소함을 확인하였다. 따라서 본 논문에서는 SNR과 함께 다중 파라미터를 동시에 사용하는 딥러닝 기반 BER 예측 모델(MLP, Multi-Layer Perceptron)을 적용한다. 제안하는 BER 예측 모델은 처리량이 가장 높은 통신 방법을 찾아낼 수 있고, 시뮬레이션 결과 85.2%의 높은 정확도와 네트워크 처리량은 기존 처리량보다 4.4배 높은 성능을 보여주는 우수한 성능을 확인하였다.
수중 자원 탐색 및 해양 탐사, 환경 조사 등 수중 통신에 대한 수요가 급격하게 증가하고 있다. 하지만 수중 무선 통신을 사용하기 앞서 많은 문제점을 가지고 있다. 특히 수중 무선 네트워크에서 환경적 요인으로 인해 불가피하게 발생하는 불필요한 지연 시간과 노드 거리에 따른 공간적 불평등 문제가 존재한다. 본 논문은 이러한 문제를 해결하기 위해 ALOHA-Q를 기반으로 한 새로운 NAV 설정 방법을 제안한다. 제안 방법은 NAV 값을 랜덤하게 사용하고 통신 성공, 실패 유무에 따라 보상을 측정한다. 이후 보상 값에 따라 NAV 값을 설정 한다. 수중 무선 네트워크에서 에너지와 컴퓨팅 자원을 최대한 낮게 사용하면서 NAV 값을 강화 학습을 통하여 학습하고 한다. 시뮬레이션 결과 NAV 값이 해당 환경에 적응하고 최선의 값을 선택하여 불필요한 지연 시간문제와 공간적 불평등 문제를 해결할 수 있음을 보여준다. 시뮬레이션 결과 설정한 환경 내에서 기존 NAV 설정 시간 대비 약 17.5%의 시간을 감소하는 것을 보여준다.
지구 전체 표면적의 약 70%인 바다는 석유를 포함한 각종 수산자원이 풍부하지만 인간은 바다로 접근하기 위해 파도, 태풍 등의 날씨에 절대적인 영향을 받기 때문에 쉽게 접근하기 어렵다. 이 경우 해양 관련 정보를 얻고 분석 및 활용하기 위해 IoT (Internet of Things)의 기반 기술인 센서네트워크를 사용할 수 있다. 하지만 바다에 센서네트워크를 적용하기 위해서는 파도, 태풍을 포함한 염분 등을 충분히 고려해야 한다. 게다가 수중 통신을 사용할 경우 수중에서는 전파를 사용할 수 없기 때문에 음파와 같이 수중에서 통신이 가능한 방법을 선택해야 한다. 따라서 본 논문에서는 해양센서네트워크 기술의 현장 적용을 위한 고려사항에 대해 논의하고, 실제 가두리 양식장에 설치 운용한 사례를 소개한다.
본 논문은 기존 강화학습 기반 수중통신 예약방식에서 성능 저하 요인 중 하나인 긴 학습 시간을 단축시킴으로써 에너지 소모를 감소시킬 수 있는 향상된 채널 접속 기법을 제안한다. 수중 무선 네트워크에서 노드 간 거리를 추정하여 이를 바탕으로 기존 강화 학습 기반 채널 접속 방법의 학습 범위의 최대, 최소치를 결정한다. 이는 기존 강화학습의 학습 범위를 줄일 수 있다. 수중 무선 네트워크 환경의 특성에 따른 거리 추정값의 오차를 고려하여 NAV 학습 범위를 고려하며, 이를 적용하기 위해 인위적으로 간섭의 크기를 변경시켜가며 학습 진행률에 대한 성능 테스트를 진행하였다. 실험 결과 기존 방법 대비 제안된 AQ-NAV 방안의 경우, 20-40회 학습에서도 360개의 학습 배열 중 평균 340-350개 이상의 학습 배열이 학습이 진행되었고 50회 이상 학습에서는 모든 학습 배열에 대하여 학습이 진행되었다. 반면, 기존 연구의 경우 학습이 120회 이상 진행되어도 360개의 배열 중 300-320개의 배열에 대한 학습이 진행되었다. 실험에서는 기존 대비 적은 횟수의 시도로 학습이 가능함을 보여준다. AQ-NAV가 수중 무선 네트워크에 적용될 경우 에너지 소비 절감을 통해 기존의 방안의 문제점을 완화하고 네트워크 성능 향상을 이룰 것으로 예상된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.