• 제목/요약/키워드: 수중진수장치

검색결과 5건 처리시간 0.018초

유인플랫폼에서의 수중로봇 운용을 위한 진수 및 회수 체계 고찰 (Consideration of Launch and Recovery Systems for Operation of Underwater Robot from Manned Platform)

  • 이기영
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.141-149
    • /
    • 2016
  • In this technical note, the issues and challenges for the launch and recovery systems (LARS) and related techniques for the operation of an underwater robot from a manned platform are considered. Various types of LARS fitted to specific manned platforms, surface or sub-surface, are surveyed and categorized. The current UUV launch and recovery systems from surface ships and submarines utilize time consuming processes. As underwater robot technologies evolve and their roles are defined, safe and effective launch and recovery methods should be developed capable of reliable and efficient operations, particularly at a high sea state. To improve the existing underwater robot capabilities, LARS technology maturation is required in the near term, leading to the ability to incorporate autonomous LARS for an underwater robot on a manned platform. In the near term, particular emphasis should be placed on UUV LARS, which are surface ship based, with submarine based systems in the long term. Furthermore, for a dedicated LARS ship, independent of the existing host ship type, particular emphasis should be given to fully utilizing the capabilities of underwater robots.

심해무인잠수정 해미래의 고도정보 추정을 위한 다중센서융합 알고리즘 (Multiple Sensor Fusion Algorithm for the Altitude Estimation of Deep-Sea UUV, HEMIRE)

  • 김덕진;김기훈;이판묵;조성권;박연식
    • 한국정보통신학회논문지
    • /
    • 제12권7호
    • /
    • pp.1202-1208
    • /
    • 2008
  • 본 논문에서는 유삭식 심해무인잠수정인 해미래와 진수장치인 해누비로 이루어지는 심해무인잠수정 시스템의 항법 알고리즘에 사용되는 다중 센서 융합 기법에 대하여 소개하고 있다. 수중 위치 추적 시스템의 성능은 초단기선, 장기선, 고도계와 같은 수중 음향 센서의 성능에 의해 결정되는데 수중음향 신호는 다양한 형태의 노이즈를 가지고 있어 특별한 주의가 요망된다. 본 논문에서는 이동 관측창 개념을 이용한 실용적인 다중 센서 융합 알고리즘을 제안하였다. 해미래의 동해 실해역 시험을 통해 획득된 계측치에 본 알고리즘을 적용하여 그 성능을 고찰한 결과 우수한 성능을 보임을 알 수 있었다.

심해 무인 잠수정 프레임의 설계 및 구조해석에 관한 연구 (A Study on the Design and Structural Analysis of the Unmanned Underwater Vehicle)

  • 정태환;노인식;천일용;이종무
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.172-177
    • /
    • 2004
  • This paper presents the results of the structural analysis and optimal design of frames of the UUV(Unmanned Underwater vehicle) to be operated at 6000m depth in the ocean. The structure of the UUV system can be classified into two structure, Launcher ana ROV. Frame of the launcher will be made by Galvanized Steel which has high strength and corrosion-resistant but this material has high specific gravity for tile object to be weight in the water Similarly, ROV will be made by AI6061-T6, and frame of the ROV will be fix many instruments and syntactic buoyancy materials. Before fabrication of tile frame, we performed sensitivity analysis - change in weight due to $\pm1\%$ change in design variables, for easy choice by change of dimension of the frame.

  • PDF

심해 과학조사용 무인잠수정의 시스템 설계 (System Design of a Deep-sea Unmanned Underwater Vehicle for Scientific Research)

  • 이판묵;이종무;전봉환;홍석원;임용곤
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.243-250
    • /
    • 2002
  • According to Ocean Korea 21, a basic plan established by the Ministry of Maritime Affairs and Fisheries (MOMAF) of Korea in May 2000, Korea Research Institute of Ships and Ocean Engineering (KRISO) proposed a program for the development of a deep-sea unmanned underwater vehicle (UUV) to explore deep sea for scientific purpose. KRISO has launched a project in May 2001 under the support of MOMAF. The deep-sea unmanned underwater vehicle will be applied to scientific researches in deep-sea as well as in shallow water. For operation of underwater vehicles in shallow water near the Korean Peninsula, a special design is required because of strong tidal current. In addition, MOMAF requires the vehicle to be designed for the purpose of long range survey, a long-term observation, and precise works in a specific area. Thus, KRISO has planned to design the system with the functional combination of both ROV and AUV. This paper presents the design of the deep-sea unmanned underwater vehicle.

  • PDF