• Title/Summary/Keyword: 수중용접봉

Search Result 12, Processing Time 0.018 seconds

Study on Underwater Welding ( Report 1 ) - Its Weldability -

  • 남기우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 1983
  • Recently, many studies for developing the underwater welding techniques have been carried out in the advanced countries as a manufacturing process and a repairing method according as a great deal of interest in development for various marine industrial fields has been gradually increased. But no study on such underwater welding is available at present in our country. In this study, underwater welding was carried out for welding of domestic structural steel plates (SM41A) of 10 mm thickness, using six types of domestic coated arc welding electrodes on a self-made gravity type underwater welding device, resulting in investigation for the underwater weldability of the domestic structural steel plates as well as for the underwater welding properties and practicability of the domestic welding electrodes.

  • PDF

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

The Experimental Study of Flux Improvement of Wet Underwater Arc Welding Electrode (습식 수중 아크용접봉의 국산화개발에 관한 기초연구)

  • 김민남;김복인;노창석
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.180-186
    • /
    • 2001
  • Underwater wet welding process was experimentally investigated by using the six types of flux coated electrodes of 3.2mm diameter and the KR-RA steel plate of 11mm thickness as base metal. Two types of electrodes were domestic covered are welding electrode(CR13, CR14) and another two types of wet welding electrodes(UW-CS-01, TN-20) and the other two types(UW-X1, UW-X2) where individually designed flux coasted electrode for experimental welding purpose.

  • PDF

A Study on the Mechanical Properties of Underwater Wet Arc Welds using the SM41 (선체용 압연강판에 대한 습식 수중 아크용접부의 기계적 특성에 관한 연구)

  • Kim, C.G.;Kwak, H.W.;Kim, M.N.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.48-54
    • /
    • 2008
  • Underwater wet arc welds of rolled steel plate (SM41) where studied welding and mechanical properties macro and narrow than that of the other things. Tensile strength of UWEB obtained to 521.5 MPa and of USBL was 524.1 MPa, but the highest elongation value was 4.68 %(UWEB). Bending strength(1166.6 MPa) of USBL is the largest and of UWEB in 1047 MPa, But deflection(22.73 mm) of UWEB in large than that of USBL(22.63 mm). Impact value(144.36 $J/cm^2$) of JPUW is the largest and of UWEB(140 $J/cm^2$) come after.

  • PDF

A Study on the Corrosion Properties of Underwater Wet Arc Welds Using the SM 41 (선체용 압연 강판의 습식 수중 아크 용접부의 부식특성에 관한 연구)

  • Kwak, H.H.;Ki., C.G.;Kim, M.N.;Hwang, S.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.110-117
    • /
    • 2005
  • Underwater wet arc welds were experimentally performed on 11mm thick KR-RA steel plate using six different types of flux coated electrodes of 4.0mm diameter, KSKR, KSKT, USBL, JPUW, UWEA and UWEB. From analysis of bead appearance, detachability of weld slag, spatter occurrence and arc stability, JPUW gives the best result, and UWEB is superior to KSKR and KSKT. By experimental result of hardness distribution on the weld bonds, UWEB weld has the narrowest bond structure which is probable condition to get the best mechanical properties of weld. UWEB and JPUW welds have more even hardness distribution across weld deposit and base metal. Upon polarization test to measure the respondency of corrosion, the electrode of UWEB shows the most excellent degree due to the low open circuit potential difference.

  • PDF

A Study on the Properties of Underwater Wet Arc Welding for the Mild Steels (연강의 습식 수중 아크 용접 특성에 관한 연구)

  • Kwak, H.H.;Kim, C.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.107-114
    • /
    • 2007
  • Underwater wet arc welds were experimentally performed on 11mm thick SS400 mild steel plate as base metal by using six different types of flux coated electrodes of 4.0mm diameter; KSKR, KSKT, USBL, JPUW, UWEA, and UWEB. As results, the developed flux coated underwater electrode had a good weldability compared with other domestic terrestrial electrodes. By rapid cooling rate, the hardness value of HAZ were increased by quenching effects. Mechanical properties for the multi-pass butt-welding specimen are also tested experimentally. The feasibility of the developed underwater electrode was experimentally studied and the results achieved in this wet arc welds have shown that the developed wet welding electrode UWEB can have a degree of integrity.

  • PDF

A Study on the Corrosion Properties of Underwater Wet Arc Welds using the SM 41 (선체용 압연 강판의 습식 수중 아크 용접부의 부식특성에 관한 연구)

  • Kwak, H.H.;Kim, C.G.;Kim, M.N.;Hwang, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.111-118
    • /
    • 2006
  • Underwater wet arc welds were experimentally performed on 11mm thick KR-RA steel plate using six different types of flux coated electrodes of 4.0mm diameter, KSKR, KSKT, USBL, JPUW, UWEA and UWEB. From analysis of bead appearance, detachability of weld slag, spatter occurrence and arc stability, JPUW gives the best result, and UWEB is superior to KSKR and KSKT. By experimental result of hardness distribution on the weld bonds, UWEB weld has the narrowest bond structure which is probable condition to get the best mechanical properties of weld. UWEB and JPUW welds have more even hardness distribution across weld deposit and base metal. Upon polarization test to measure the respondency of corrosion, the electrode of UWEB shows the most excellent degree due to the low open circuit potential difference.

  • PDF

A Basic Study on the Development of Domestic Underwater Wet Arc Welding Electrode (습식 수중 아크용접봉의 국산화개발에 관한 기초연구)

  • 김민남;김복인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1122-1129
    • /
    • 2001
  • Underwater wet arc welding process was experimentally investigated by using the six types of flux coated electrodes of 3.2 mm diameter and the KR-RA steel plate of 11 mm thickness as base metal. Two types of electrodes were domestic covered arc welding electrode(CR13, CR14) and another two types of wet welding electrodes(UWCS, TN20)were imported goods, and the other two type (UWX1, UWX2) were individually designed flux coated electrodes for experimental welding purpose. Main experimental results are summerized as follows: 1. It is ascertained that individually designed flux coated electrode(UWX1) could be used in practice with KR-RA steel plate for underwater wet arc bead welds. 2. Welding arc can be generated easily and considerably kept in stable using TN20 and UWX1 electrodes. 3. The micro Vickers hardness value and the portion of martensite in the HAZ were increased in all the electrodes by rapid cooling rate, but it is relatively maintain stable for UWCS, TN20 and UWX1 electrodes.

  • PDF

An Experimental Study on the Arc Stability Improvement of Underwater Wet Welding with Flux Ingredients (피복성분에 의한 수중용접봉의 아크 안정성 개선에 관한 실험연구)

  • 김복인;노창석;정교헌;김민남
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.73-79
    • /
    • 2001
  • Underwater wet bead-on-plate welds were experimentally performed on 11mm thick SS400 steel plate as base metal by using six different types of flux coated electrodes of 3.2mm diameter. Two kinds of different flux coated wet arc electrodes (UW-1, UW-2) were individually designed flux materials, three kinds of the electrodes (E4301, E4311, E4313) were terrestrial electrodes and the another one (TN20) was an imported underwater wet welding electrode. As results, the individually designed flux coated underwater electrode, UW-2 and TN20 had a good starting and the excellent arc stability compared with other electrodes. No significant difference of bead appearance could be detected, but the slag detachability of TN20 electrodes was relatively undesirable. By rapid cooling rate, the hardness value and the portion of martensite of HAZ were increased, but it was considerably maintain stable for TN20 and UW-2 electrodes. The individually designed flux coated electrode, UW-2 could be used in practice for underwater bead welds.

  • PDF

A Study on Tensile Restraint Crack Critical Stress Characteristcs of Gravity-Wet-Type Underwater Welded Joints (중력식 습식 수중용접부의 인강구속균열 임계응력 특성에 관한 연구)

  • O, Se-Gyu;Gang, Mun-Ho;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.61-65
    • /
    • 1987
  • In this study, the characteristics of TRC (tensile restraint crack) critical stress in the gravity type underwater wet welding process and in the in-air welding have been investigated for Y, y and 45$^{\circ}$r grooves using the KR Grade A-3 steel plates and the E4303 covered electrodes. The following results were obtained: (1) In the TRC tests, the initial critical stress of Y groove is higher than those of the 45$^{\circ}$r single bebel grooves in both in-air and underwater weldings, and the cold fracture sensitivity is higher in the underwater welding than in the in-air welding. (2) The hardness of underwater weld metal is the highest in heat affected zone is about Hk 365 in the in-air weld but Hk 670 in the underwater weld which is higher for cooling speed is more rapid, resulting in the lower critical stress by increase of fracture sensitivity. (3) The diffusible hydrogen quantity for 48 hours is about 18cc/100g-weld-metal in the in-air welding but 48cc/100g-weld-metal in the underwater welding. So that, in the case of underwater welding the diffusible hydrogen penetrates about 3 times more than that in the in-air welding.

  • PDF