• Title/Summary/Keyword: 수정 Cam-Clay 모델

Search Result 31, Processing Time 0.02 seconds

The Introduction of Egg-Cam Clay Model and Elasto-Plastic Analysis of Reinforcement Effect on Buried Pipe (Egg-Cam Clay 모델 제안 및 지중매설관의 보강효과의 탄소성모델 해석)

  • Ahn, Tae-Bong;Cho, Sam-Duck;Kim, Jin-Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.5-14
    • /
    • 2002
  • In this study, stress-deformation characteristics of buried pipe are studied. A numerical model, i.e., Egg-Cam Clay is introduced for the analysis of soft clay. Cam Clay model has a difficulty in analyzing soft clay that has two properties of shrinkage and swelling. Egg-Cam Clay model is modified format of Cam Clay model. In addition, Mohr-Coulomb model using finite element method is employed to verify effects of the geogrid, EPS geofoam. Stress deformation of several cases of pipe and other reinforcemnt material combinations are analyzed. Geofoam and geogrid have positive effects on the deformation characteristics.

  • PDF

The Consolidation Behavior on Soft Clay by Numerical Analysis (수치해석에 의한 연약지반의 압밀거동)

  • Kang, Yea Mook;Lee, Dal Won;Lim, Seong Hun;Yoon, Je Shik
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.235-246
    • /
    • 1998
  • This study was performed to find the effect of parameters of numerical analysis model. To find the parameters of numerical analysis model, triaxial test and consolidation test were conducted and the results were compared and analyzed with various methods. Preloaded ground was analyzed with Hyperbolic and Modified Cam-Clay models. Hyperbolic model analysis result was good agreement with measured lateral displacement, and Modified Cam-Clay model agreed more than Hyperbolic model with settlement. When the parameters of models were changed, change of settlement on center of embankment and of maximum lateral displacement on distance 5m from end of embankment were compared. On Hyperbolic model the parameter K has large influence on settlement and lateral displacement. On Modified Cam-Clay model the parameters ${\Gamma}$ and M have large influence on settlement and lateral displacement, respectively.

  • PDF

Study on Shear Characteristics of Saturated Clay by Critical State Concept (한계상태(限界狀態) 개념(槪念)에 의한 포화점토(飽和粘土)의 전단특성(剪斷特性)에 관한 연구(研究))

  • Park, Byung Ki;Jeong, Jin Sup;Lee, Moon Soo;Kang, Byung Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.45-59
    • /
    • 1983
  • This study aims at investigating the deformation and strength characteristics on reconsolidated-remoleded saturated clay sampled at the downstream of Young-san river, in Cheollanamdo through a series of both drained and underained triaxial tests by means of the critical state concept. Among several constitutive equations developed so far, the Cam-clay model, the modified Cam-clay model and the dilatancy model are used. The prediction of strains is obtained and the value of prediction is compared with that of observation. For the clay specimen, the prediction of volumetric strain on the dilatancy model is well consistent with the observation and the prediction of shear strain on the modified Cam-clay model coincides exactly with the observation.

  • PDF

Finite Element Analysis on the Behavior of Soil under a Footing (기초(基礎)아래 지반(地盤)의 거동에 대한 유한요소(有限要所) 해석(解析))

  • Lee, Yeong Saeng;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.167-176
    • /
    • 1991
  • Finite element programs are developed, adopting the hyperbolic model and the Cam-clay model. In the hyperbolic model, a new model taking into account the volume change during shear is proposed and a new technique considering the density change underneath a footing is proposed. And a computing algorithm considered as more reasonable than existing one is presented. In the Cam-clay model, the deveoloped program is applied to sand, the case not recorded much, and then it is tried to analiza the behavior of sand from the viewpoint of the critical state concept. For this, the conventional CD triaxial compression tests and the footing model tests are carried out. The results are improved by 60 percent by using the modified hyperbolic model proposed. When the Cam-clay model is applied to sand, a model reflecting the overconsolidation effects and a computing algorithm accounting for the strain softening are needed. The results obtained by using the Cam-clay model are not much influenced by the value of the initial poisson's ratio, but those of the modified hyperbolic model are much influenced by that. So th values of the initial poisson's ratio must be selected deliberately in the numerical analysis.

  • PDF

A Study on the Applicability of Modified Cam-clay Model in Low Plastic Clays (저소성 점토의 수정 Cam-clay 모델 적용성에 관한 연구)

  • Lee, Song;Kim, Tae-Hwoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.247-256
    • /
    • 2003
  • FEM analyses which are based on modified Cam-clay theory have been generally used in such cases as analyses of stability and displacement fur embankment construction on soft clays. However, the Modified Cam Clay Model can generate some problems in anisotropic stress conditions of field because the critical state theory has been developed through many laboratory tests in isotropic conditions. Thus, the applicability on the prediction of undrained shear strength and pore water pressure which was based on the critical state theory was evaluated by triaxial tests and numerical analyses in isotropic and anisotropic conditions. Used samples often come out in domestic area, together with general low plastic clays which are showing dilatant behavior in shearing process. They were evaluated by laboratory tests and FEM based on MCCM. From the results of test and numerical analysis, the predictions of undrained strength in low plastic clays well coincided with each other in both isotropic and anisotropic conditions. However, the generation of porewater pressure was often overestimated during undrained shearing in anisotropic conditions. The results can generate the errors in the prediction of stress path of field sites during loading such as construction of embankment on soft clays because the field is subjected to anisotropic conditions during loading.

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory (한계 상태 기반 수정 Modified Cam Clay 파괴면)

  • Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.5-15
    • /
    • 2020
  • This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

A Prediction of Undrained Shear Behavior of the Remolded Weathered Mudstone Soil Using the Constitutive Model (구성모델을 이용한 재성형 이암풍화토의 비배수 전단거동 예측)

  • Lee Sang-Woong;Choo In-Sig;Kim Young-Su;Kim Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.31-40
    • /
    • 2005
  • This study proposed a new yield function considering the spacing ratio of the critical state to predict the undrained shear behavior of anisotropic field ground. We have suggested a nonassociated constitutive model that used a newly modified plastic potential function in order to apply the yield function of the modified Cam-Clay model to the anisotropic consolidation. In this paper, we predicted undrained shear behavior of the remolded weathered mudstone soils in Phohang isotorpically and anisotropically consolidated using the suggested model. To evaluate the reliability of proposed model, we predictied undrained shear behavior of Bankok Clay isotropically, nomally consolidated and Drammen Clay Ko consolidated. The predicted results are consistent with the observed behavior.

Behavior Characteristics of Embankment Foundation Based on Elasto-Viscoplastics Analysis (성토기초지반의 탄.점소성 거동 특성)

  • ;;Li Guang Fan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.1
    • /
    • pp.151-159
    • /
    • 2001
  • This study was performed to investigate the effect of time-dependent creep on the deformation. In the analysis, modified Cam-Clay model was adopted to describe the elastic-plastic behavior of clayey soil. In order to consider effect of creep, the secondary coefficient of consolidation $\alpha$ was supplemented to modified Cam-Clay model. To examine the reliability of the program which is developed in this study, the estimated values by this program were compared with the experimental results. The results of the analysis were in good agreement with the observed values in the field.

  • PDF

The Characteristic for Undrainded Shear Behavior of in Low-Plastic Silt and its Prediction (저소성 실트의 비배수 전단거동 특성과 예측)

  • Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.61-70
    • /
    • 2008
  • In this study, undrained triaxial (CU) tests were performed on low-plastic silt of Nakdong River in order to investigate the undrained shear behavior of low-plastic silt. In experimental results, the deviator stress showed the hardening behavior after reaching its yield stress like the tendency of common sand, and the pore water pressure was gradually decreased to critical state after the maximum value. In the effective stress paths, regardless of consolidation stress or overconsolidation ratios, both a critical state line (CSL) and a phase transformation line (PTL) exist in the effective stress path that is similar to the case of sand. The behavior of low-plastic silt was predicted by the Modified Cam-Clay (MCC) model, the Jordan and the Elman-jordan model that is artificial neural network model. According to predicted results, the overall undrained shear behavior of low-plastic silt could not be predicted with the MCC model, but the Jordan and Elman-Jordan model showed well-matched experiment results.

  • PDF

A Constitutive Model Using the Spacing Ratio of Critical State (한계상태 간격비를 이용한 구성모델)

  • Lee, Seung-Rae;O, Se-Bung;Gwan, Gi-Cheol
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.45-58
    • /
    • 1992
  • An elasto-plastic constitutive model for geological materials, which satisfies the flezibility and stability at the same time, can be used in a number of geotechnical problems. Using the spacing ratio of critical state, a flexible model is proposed based on the stability of modified Camflay model. The spacing ratio of critical state can be simply evaluated, and practically used in describing the undrained shearing behavior of clay. The proposed model has precisely predicted the stress paths and stress -strain relationships, compared with the modified Camflay model, with respect to undrained triaxial test results. Besides, the effects of strain rate, creep, and relaxation can also be considered. Using the quasi-state boundary surface, the constitutive relations are well predicted. Therefore, it is found that the assumption of associative flow rule is well posed for undrained behavior of normally consolidated clay.

  • PDF