• Title/Summary/Keyword: 수자원 평가

Search Result 3,797, Processing Time 0.031 seconds

End-use analysis of household water by metering (가정용수의 용도별 사용량 조사 및 원단위 분석)

  • Kim, Hwa-Soo;Lee, Doo-Jin;Kim, Ju-Whan;Kim, Jung-Hyun;Jung, Kwan-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.869-877
    • /
    • 2008
  • The purpose of this study is to investigate the trends and patterns of variou kind of water uses in a household by metering in Korea. Water use components are classified by toilet, washbowl, bathing, laundry, kitchen, etc. Flow meters are installed in 146 household selected by sampling in all around Korea. The data are gathered by web-based data collection system from the year 2002 to 2006, considering pre-investigated data such as occupation, revenue, family members, housing types, age, floor area, water saving devices, education, etc. Reliable data are selected by upper fence method for each observed water use component and statistical characteristics are estimated for each residential type to determine liter per capita per day. Estimated domestic per capita day show an indoor water use with the range from $150{\ell}pcd$ to $169{\ell}pcd$ for each housing type as the order of high rise apartment, multi-house, and single house. As the order of consuming amount among water use components, it is investigated that toilet($38.5{\ell}pcd$) is the first, and the second is laundry water($30.8{\ell}pcd$), the third is kitchen($28.4{\ell}pcd$), the fourth is bathtub($24.7{\ell}pcd$), the next is washbowl($15.4{\ell}pcd$). The results are compared with water uses in U.K. and U.S. As life style has been changed into western style, pattern of water use in Korea is tend to be similar with the U.S. water use pattern. Compared with the surveying results by Bradley, on 1985. Thirty liter of total use increased with the advancement of economic level, and a little change of water use pattern can be found. Especially, toilet water take almost half part of total water use and laundry water shows lowest as 11% in surveying at the year of 1985. But, this study shows that 39 liter, 28% of toilet water, has been decreased by the spread of saving devices and campaign. It is supposed that the spread large sized laundry machine make by-hand laundry has been decreased and water use increased. Unit water amount of each end-use in household can be applied to design factor for water and wastewater facilities, and it play a role as information in establishing water demand forecasting and conservation policy.

  • PDF

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed (기후변화가 경안천 유역의 수문요소에 미치는 영향 평가)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.33-50
    • /
    • 2009
  • The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011 (위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로)

  • Yoon, Sun-Kwon;Park, Kyung-Won;Kim, Jong Pil;Jung, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.371-384
    • /
    • 2014
  • This study developed a new algorithm of extreme rainfall extraction based on the Communication, Ocean and Meteorological Satellite (COMS) and the Tropical Rainfall Measurement Mission (TRMM) Satellite image data and evaluated its applicability for the heavy rainfall event in July-2011 in Seoul, South Korea. The power-series-regression-based Z-R relationship was employed for taking into account for empirical relationships between TRMM/PR, TRMM/VIRS, COMS, and Automatic Weather System(AWS) at each elevation. The estimated Z-R relationship ($Z=303R^{0.72}$) agreed well with observation from AWS (correlation coefficient=0.57). The estimated 10-minute rainfall intensities from the COMS satellite using the Z-R relationship generated underestimated rainfall intensities. For a small rainfall event the Z-R relationship tended to overestimated rainfall intensities. However, the overall patterns of estimated rainfall were very comparable with the observed data. The correlation coefficients and the Root Mean Square Error (RMSE) of 10-minute rainfall series from COMS and AWS gave 0.517, and 3.146, respectively. In addition, the averaged error value of the spatial correlation matrix ranged from -0.530 to -0.228, indicating negative correlation. To reduce the error by extreme rainfall estimation using satellite datasets it is required to take into more extreme factors and improve the algorithm through further study. This study showed the potential utility of multi-geostationary satellite data for building up sub-daily rainfall and establishing the real-time flood alert system in ungauged watersheds.

Hydrologic Regimes Analyses on Down Stream Effects of the Young Chun Dam by Indicators of Hydrologic Alterations (수문변화 지표법에 의한 영천댐이 하류하천에 미치는 유황변화 분석)

  • Park, Bong-Jin;Kim, Joon-Tae;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.163-172
    • /
    • 2008
  • Hydrologic regimes play a major role in determining the biotic composition, structure, and function of river ecosystem. In this study, hydrologic regimes were analyzed on down stream effects of the Young-Chun dam construction using the Indicators of Hydrologic Alterations(IHA). The analysis results were as follows ; (1) Monthly mean flows were decreased during drought and flood season on the pre and post dam, (2) Magnitude and Duration of Annual Exterm Conditions, annual minima 1-day means was $3.48m^3/sec$, $0.89m^3/sec$ and annual maxima 1-day mean was $833.1m^3/sec$, $672.1m^3/sec$ on the pre and post dam (3) Timing of Annual Exterm conditions, Julian date of the annual minima 1-day means was 180th(June) in the pre dam, 257th(September) in the post dam, Julian date of the annual maxima 1-day means was 209th(July) in the pre dam, 217th(August) in the post dam, (4) Frequency and Duration of High and Low Pulse, Low Puls counts and duration were 3 times and 23 days in the pre dam, High Pulse counts and duration were 4 times and 2 days in the pre dam. (5) Rate and Frequency of Water Condition Changes, rise rates was 39.27 %, 19.36 % and fall rates -15.85 %, -8.16 % in the pre and post dam, respectively (6) Coefficient of Variation, annual exteram water conditions were decreased from 0.9054 to 0.6314 and from 1.0440 to 0.9617, Timing of Annual Exterm conditions were incereased for minima flow from 0.269 to 0.282, for maxima form 0.069 to 0.153.

Assessment of Climate Change Impact on Storage Behavior of Chungju and the Regulation Dams Using SWAT Model (SWAT을 이용한 기후변화가 충주댐 및 조정지댐 저수량에 미치는 영향 평가)

  • Jeong, Hyeon Gyo;Kim, Seong-Joon;Ha, Rim
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1235-1247
    • /
    • 2013
  • This study is to evaluate the climate change impact on future storage behavior of Chungju dam($2,750{\times}10^6m^3$) and the regulation dam($30{\times}10^6m^3$) using SWAT(Soil Water Assessment Tool) model. Using 9 years data (2002~2010), the SWAT was calibrated and validated for streamflow at three locations with 0.73 average Nash-Sutcliffe model Efficiency (NSE) and for two reservoir water levels with 0.86 NSE respectively. For future evaluation, the HadCM3 of GCMs (General Circulation Models) data by scenarios of SRES (Special Report on Emission Scenarios) A2 and B1 of the IPCC (Intergovernmental Panel on Climate Change) were adopted. The monthly temperature and precipitation data (2007~2099) were spatially corrected using 30 years (1977~2006, baseline period) of ground measured data through bias-correction, and temporally downscaled by Change Factor (CF) statistical method. For two periods; 2040s (2031~2050), 2080s (2071~2099), the future annual temperature were predicted to change $+0.9^{\circ}C$ in 2040s and $+4.0^{\circ}C$ in 2080s, and annual precipitation increased 9.6% in 2040s and 20.7% in 2080s respectively. The future watershed evapotranspiration increased up to 15.3% and the soil moisture decreased maximum 2.8% compared to baseline (2002~2010) condition. Under the future dam release condition of 9 years average (2002~2010) for each dam, the yearly dam inflow increased maximum 21.1% for most period except autumn. By the decrease of dam inflow in future autumn, the future dam storage could not recover to the full water level at the end of the year by the present dam release pattern. For the future flood and drought years, the temporal variation of dam storage became more unstable as it needs careful downward and upward management of dam storage respectively. Thus it is necessary to adjust the dam release pattern for climate change adaptation.

Bias Correction for GCM Long-term Prediction using Nonstationary Quantile Mapping (비정상성 분위사상법을 이용한 GCM 장기예측 편차보정)

  • Moon, Soojin;Kim, Jungjoong;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.833-842
    • /
    • 2013
  • The quantile mapping is utilized to reproduce reliable GCM(Global Climate Model) data by correct systematic biases included in the original data set. This scheme, in general, projects the Cumulative Distribution Function (CDF) of the underlying data set into the target CDF assuming that parameters of target distribution function is stationary. Therefore, the application of stationary quantile mapping for nonstationary long-term time series data of future precipitation scenario computed by GCM can show biased projection. In this research the Nonstationary Quantile Mapping (NSQM) scheme was suggested for bias correction of nonstationary long-term time series data. The proposed scheme uses the statistical parameters with nonstationary long-term trends. The Gamma distribution was assumed for the object and target probability distribution. As the climate change scenario, the 20C3M(baseline scenario) and SRES A2 scenario (projection scenario) of CGCM3.1/T63 model from CCCma (Canadian Centre for Climate modeling and analysis) were utilized. The precipitation data were collected from 10 rain gauge stations in the Han-river basin. In order to consider seasonal characteristics, the study was performed separately for the flood (June~October) and nonflood (November~May) seasons. The periods for baseline and projection scenario were set as 1973~2000 and 2011~2100, respectively. This study evaluated the performance of NSQM by experimenting various ways of setting parameters of target distribution. The projection scenarios were shown for 3 different periods of FF scenario (Foreseeable Future Scenario, 2011~2040 yr), MF scenario (Mid-term Future Scenario, 2041~2070 yr), LF scenario (Long-term Future Scenario, 2071~2100 yr). The trend test for the annual precipitation projection using NSQM shows 330.1 mm (25.2%), 564.5 mm (43.1%), and 634.3 mm (48.5%) increase for FF, MF, and LF scenarios, respectively. The application of stationary scheme shows overestimated projection for FF scenario and underestimated projection for LF scenario. This problem could be improved by applying nonstationary quantile mapping.

Parameters Estimation of Clark Model based on Width Function (폭 함수를 기반으로 한 Clark 모형의 매개변수 추정)

  • Park, Sang Hyun;Kim, Joo-Cheol;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.597-611
    • /
    • 2013
  • This paper presents the methodology for construction of time-area curve via the width function and thereby rational estimation of time of concentration and storage coefficient of Clark model within the framework of method of moments. To this end time-area curve is built by rescaling the grid-based width function under the assumption of pure translation and then the analytical expressions for two parameters of Clark model are proposed in terms of method of moments. The methodology in this study based on the analytical expressions mentioned before is compared with both (1) the traditional optimization method of Clark model provided by HEC-1 in which the symmetric time-area curve is used and the difference between observed and simulated hydrographs is minimized (2) and the same optimization method but replacing time-area curve with rescaled width function in respect of peak discharge and time to peak of simulated direct runoff hydrographs and their efficiency coefficient relative to the observed ones. The following points are worth of emphasizing: (1) The optimization method by HEC-1 with rescaled width function among others results in the parameters well reflecting the observed runoff hydrograph with respect to peak discharge coordinates and coefficient of efficiency; (2) For the better application of Clark model it is recommended to use the time-area curve capable of accounting for irregular drainage structure of a river basin such as rescaled width function instead of symmetric time-area curve by HEC-1; (3) Moment-based methodology with rescaled width function developed in this study also gives rise to satisfactory simulation results in terms of peak discharge coordinates and coefficient of efficiency. Especially the mean velocities estimated from this method, characterizing the translation effect of time-area curve, are well consistent with the field surveying results for the points of interest in this study; (4) It is confirmed that the moment-based methodology could be an effective tool for quantitative assessment of translation and storage effects of natural river basin; (5) The runoff hydrographs simulated by the moment-based methodology tend to be more right skewed relative to the observed ones and have lower peaks. It is inferred that this is due to consideration of only one mean velocity in the parameter estimation. Further research is required to combine the hydrodynamic heterogeneity between hillslope and channel network into the construction of time-area curve.

Bivariate Rainfall Frequency Analysis and Rainfall-runoff Analysis for Independent Rainfall Events (독립 호우사상에 대한 이변량 강우빈도해석 및 강우-유출해석)

  • Park, Cheol-Soon;Yoo, Chul-Sang;Jun, Chang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.713-727
    • /
    • 2012
  • In this study, the bivariate frequency analysis of the independent annual rainfall event series was done to be used for the runoff analysis, whose results were also compared with those from the conventional univariate frequency analysis. This study was applied to three differently-sized basins such as the Joongryang Stream, Chunggye Stream, and Ooyi Stream. The Clark model was used as the runoff model, and the SCS method was applied for the calculation of the effective rainfall. The alternating block method and the Huff method were considered to be compared for the temporal distribution of rainfall event. Summarizing the results are as follows. (1) The difference between the univariate and bivariate frequency analysis results were large when the rainfall duration was short, but significantly decreased as the rainfall duration increased. The univariate frequency analysis results were bigger when the rainfall duration was short, but smaller in opposite case. (2) The peak flow derived by applying the alternating block method was bigger than that by the Huff method. Also, the peak flow when applying the alternating block method increased as the rainfall duration increased, but converged smoothly around the rainfall duration of 24 hours. (3) For the Joongryang Stream, when applying the Huff method, the peak flow derived for the bivariate frequency analysis was bigger than that for the univariate case, but for the other two basins, the results were opposite. When applying the alternating block method, the results were consistent for all three basins that the peak flow derived by applying the bivariate frequency analysis was bigger than those by the univariate frequency analysis.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

Application of deep learning method for decision making support of dam release operation (댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가)

  • Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1095-1105
    • /
    • 2021
  • The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.