주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.
온라인 플랫폼을 통한 애널리스트 보고서의 공유가 가능해짐에 따라 애널리스트들이 생성한 보고서는 시장 참여자들 간 금융 정보 격차를 줄일 수 있는 유용한 도구가 되었으며, 애널리스트 보고서의 정량적 정보가 주식수익률 예측에 다수 활용되었다. 하지만 상대적으로 애널리스트 보고서 내 텍스트 정보의 주식수익률 예측 정보력에 대한 국내 자료 기반 연구는 상대적으로 많이 부족하다. 본 연구는 애널리스트 보고서에서 추출 가능한 텍스트로부터 어조 변수를 생성하여 주식수익률 예측에 정보력이 있는지를 검증하되, 기존 연구들의 선형모형 가정 기반 검정의 한계를 해결하고자 랜덤 포레스트 기반의 F-test를 사용하여 기업수익률 예측력을 검증하였다.
한국증권시장을 포함한 대부분의 지역증권시장이 미국 뉴욕증권시장의 움직임에 반응하거나 동조현상을 보인다는 사실은 이미 경험적으로 혹은 통계적으로 널리 수용되고 있다. 본 연구는 그러한 반응에 비선형성이 존재하는가를 일별 주가수익률을 데이터로 활용하여 우선적으로 검정한다. 그러한 검정결과에 입각하여 비선형성을 내재화시킨 계량분석모형이 주가수익률을 설명하고 예측하는데 도움을 줄 수 있는가를 확인한다. 본 연구에서는 이러한 비선형성에 관련된 정보를 유도하기 위하여 평활전이(자기)회귀분석모형(STR)을 이용한다. STR모형은 국면전환을 야기하는 전이변수를 명시적으로 확인할 수 있고 다양한 국면전환형태를 모형에 수용할 수 있는 장점을 가지고 있다. KOSPI수익률의 비선형성에 대한 검정결과는 귀무가설인 선형성이 기각되는 것으로 나타났으며, 그러한 비선형성의 형태는 미국증권시장이 하강기에 처한 경우에 상승기에 처한 상태보다 민감한 동조현상을 보이는 것으로 나타났다. 하지만 추정된 STR모형이 주가의 변동을 설명하거나 예측하는데 여타의 모형보다 나은 능력을 가지는가에 대해서는 긍정적인 결과를 얻지 못하였다.
주식 시장에서 안정적으로 높은 수익을 얻기 위하여 많은 트레이딩 알고리즘에 대한 연구들이 이루어졌다. 트레이딩 알고리즘들이 미국 주식시장의 거래량에서 차지하는 비율은 80 프로가 넘을 정도로 많이 사용된다. 많은 연구에도 불구하고 항상 좋은 성능을 나타내는 트레이딩 알고리즘은 존재하지 않는다. 즉, 과거에 좋은 성능을 보이는 알고리즘이 미래에도 좋은 성능을 보인다는 보장이 없다. 그 이유는 주가에 영향을 주는 요인은 매우 많고, 미래의 불확실성도 존재하기 때문이다. 따라서 본 논문에서는 알고리즘들의 수익률에 대한 과거 기록을 바탕으로 미래의 수익률을 잘 예측하고 수익률도 높을 것으로 추정되는 알고리즘을 선택하는 TimeGAN을 활용한 모델을 제안한다. LSTM기법은 미래 시계열 데이터의 예측이 결정론적임에 반하여 TimeGAN은 확률적이다. TimeGAN의 확률적인 예측의 이점은 미래에 대한 불확실성을 반영하여 줄 수 있다는 점이다. 실험 결과로써, 본 논문에서 제안한 방법은 적은 변동성으로 높은 수익률을 달성하고, 여러 다수의 비교 알고리즘에 비해 우수한 결과를 보인다.
본 연구는 2015년 1월부터 2020년 4월까지 건화물선 시장의 일별 운임수익률에 대한 레버리지 효과를 포착하기 위한 확률 변동성(stochastic volatility) 모형을 제안하고 운임수익률을 분석한다. 확률 변동성 분석에서 수익률과 변동성 간에 존재하는 음의 상관관계에 기초한 레버리지 효과에 대한 Bayesian Markov Chain Monte Carlo 방법을 포함하는 추정은 건화물선 운임수익률은 레버리지 효과를 포함하는 추정이 일반적인 SV 모형에 기초한 분석보다 유사한 추정치를 나타내지만 레버리지 효과에 대한 상관성 추정에서 통계적으로 유의미함을 나타낸다. 즉, 실증분석 결과는 수익률과 변동성의 상관도, 변동의 크기와 부호에 따라 상이함을 나타내며, 이는 SV 모델이 레버리지 효과를 고려하는 것이 추정치의 적합도를 향상시킴을 나타낸다. 추정모형의 레버리지 효과에 대한 통계적 유의성에 추가적으로 로그 예측력 점수를 통한 분석은 레버리지 효과를 고려하는 모형의 예측력이 향상된 추정 결과를 제시한다. 이러한 실증분석 결과는 레버리지 효과를 포함하는 확률 변동성 모형이 해양 산업의 운임 리스크 모델링에 중요함을 통계적으로 제시하는 유의미한 실증분석 결과다.
신경회로망은 과거 데이터로부터 유용한 정보를 추출해서 주가지수의 이동 방향을 예측하는데 사용되어 왔다. 주가 지수의 상승 또는 하락 방향을 예측하는 기존 연구는 지수의 작은 변화에도 상승이나 하락을 예측하므로 이를 기반으로 지수 연동 ETF를 매매 하면 손실이 발생할 가능성이 높다. 본 논문에서는 ETF 매매 손실을 줄이고 매매 당 일정 이상의 수익을 내기 위한 일별 KOrea composite S0tock Price Index (KOSPI)의 이동 방향을 예측하는 신경회로망 모델을 제안한다. 제안된 모델은 이동 방향 예측을 위해 전일 대비 지수 변동률이 상승(변동률${\geq}{\alpha}$), 하락(변동률${\leq}-{\alpha}$)과 중립($-{\alpha}$<변동률<${\alpha}$)을 표시하는 출력을 갖는다. 예측이 상승이면 레버리지 Exchange Traded Fund (ETF)를, 하락이면 인버스 ETF를 매수한다. 본 논문에서 구현된 신경회로망 모델 중 PNN1의 Hit ratio (HR)은 학습에서 0.720, 평가에서 0.616이다. 평가용 데이터로 ETF 매매를 시뮬레이션하면 수익률은 8.39 ~ 16.32 %를 보인다. 또한 제안된 이동 방향 예측 신경회로망 모델이 주가지수 예측 신경회로망 모델 보다 ETF 매매 성공률과 수익률에서 더 우수하다.
본 연구는 한국증권시장에서 변동성의 정보비대칭효과를 조건부 이분산모형을 이용하여 검증하고자 하였다. 검증방법으로는 Engle과 Ng (1993)의 연구에 기초하여 정보반응곡선(News impact curve)으로 분석하였다. 분석자료로 1980년 부터 1995년 까지의 한국종합주가지수, 일별 초과수익률자료를 사용하였다. 정보반응곡선에 이용한 모형은 GARCH 모형, EGARCH 모형, TGARCH 모형, AGARCH 모형등 4개의 조건부 이분산 모형이다. 무조건 분산을 이용한 정보 반응곡선의 함수형태로 보면, 분산의 정보반응에 있어서 GARCH 모형은 대칭적으로 반응하며 나머지 조건부 이분산 모형인 EGARCH 모형, TGARCH 모형, 그리고 AGARCH 모형은 비대칭적으로 반응하는 모형임을 알 수 있었다. 실증분석결과 정보반응곡선을 통하여 악재(bad news)정보에 따라 예측하지 못한 주식수익률의 하락이 호재(good news)에 따른 예측하지 못한 주식수익률의 상승보다 더 큰 변동성을 발견할 수 있었다. 그러나 비대칭성의 크기는 그다지 큰 것으로 보이지 않았다. 모형적합성 검정에서도 4개의 조건부 이분산 모형은 모두 적합한 것으로 보인다. 그중에서도 EGARCH 모형과 TGARCH 모형이 상대적으로 주가예측력이 뛰어나 보인다. 그러나 변동성의 정보 비대칭반응을 통계적으로 유의적인 것으로 확인한 모형은 TGARCH모형 뿐이었다.
본 연구는 다항회귀분석을 통해 장기금리와 단기금리의 차이인 금리 스프레드와 주식 수익률 간 영향을 분석한다. 기존 연구들은 미국시장을 중심으로 금리 스프레드를 통한 경기를 예측에 초점을 맞추어 진행되었다. 선행 연구들은 장단기금리의 기간을 조절하고 선행정도를 분석하며 금리 스프레드를 경기예측 선행지표로 검증했다. 국내에서도 2006년 경기종합지수 제 7차 개편 이후 금리스프레드를 경기 선행지수 구성항목에 포함하였으며 현재까지도 활용하고 있다. 그럼에도 불구하고 국내 주식시장에서 금리스프레드와 산업별 주식 수익률에 대한 연구는 부족하다. 때문에 본 연구에서는 국내주식시장을 대상으로 금리스프레드와 산업별 주식 수익률은 분석했다. 회귀분석을 통해 인과관계가 높은 장단기 금리를 선정하고 선행기간 및 산업별 상관관계를 파악했다. 연구 과정에서 단순 선형회귀 분석(Simple Linear Regression)의 한계를 극복하기 위해 다항 회귀분석(Polynomial Linear Regression)을 활용해 설명력을 높였다. 분석 결과 6개월 선행하여 무보증 3년 회사채(AA-) 수익률과 콜금리 수익률의 차이 금리스프레드로 사용했을 때 높은 인과를 확인하였으며 산업별 주식수익률을 분석한 결과 해당 금리 스프레드와 자동차산업의 수익률의 관계가 가장 밀접함을 확인했다. 본 연구를 통해 국내에서 금리 스프레드가 경기예측뿐만 아니라 주식수익률과도 인과관계가 있음을 확인한 것에 의의가 있다. 금리스프레드만 사용하여 주식 가격을 예측하는 것에는 한계가 있을 수 있으나 다양한 요인들과 적절히 활용할 경우 강력한 팩터로 역할을 할 것이라 기대한다.
본 논문은 단기 및 장기간에 걸쳐 부동산시장의 동태적 자금흐름과 수익률 분석에 초점을 맞추고 있다. 본 논문에서는 부동산시장의 실증적 동태적 자금흐름과 수익률 분석은 VAR모형을 사용하였으며 다양한 금융 및 경제관련 변수들을 연구에 포함시키고 있다. 실증적 분석 결과에 따르면 우리나라에서도 기존의 미국 연구 사례에서와 같이 금융시장의 자금흐름을 통하여 부동산시장의 동태적 자금흐름을 예측할 수 없다는 점을 파악할 수 있다. 또한 Granger 인과성 검정 결과에 따르면 통화정책 및 증권시장 변수 모두 전국아파트 매매가격, 전국 단독주택 매매가격, 전국 전세아파트 매매가격 실질상승률 등의 부동산관련 변수에 통계적으로 유의한 영향이 크지 않음을 알 수 있다. 그러나 분산분해 결과에 따르면 전국아파트 및 전국전세아파트 매매가격 실질상승률에 대한 움직임에 코스피수익률의 영향력이 증대될 수 있음을 알 수 있다.
최근 금융 분야에서는 빅 데이터를 이용하여 주가예측 모형을 만들어내고 있으며, 특히 금융 시계열 자료의 변동성 집중 현상을 금융 빅 데이터를 이용하여 분석함으로써 세계 주식시장의 동조화 현상을 분석하고 있다. 본 논문에서는 한국과 중국의 일별 주가지수수익률과 일중 주가지수수익률을 이용하여 이들 2개 국가의 대표적인 주가지수 시계열 데이터에 변동성 집중 현상이 존재하는지를 보다 세밀하게 추적하여 양국 주식시장의 동조화 현상을 분석한다. 분석 결과, 한국의 KOSPI와 중국의 Shanghai 종합주가지수의 지수수익률 시계열 자료는 단위근이 존재하지 않으며, 변동성 집중 현상을 보이는 것으로 나타났다. 또한 한국보다는 중국 주식시장의 변동성 집중현상이 보다 강하게 나타나며, 이러한 현상은 일중 주가지수수익률 시계열 자료에서 보다 두드러지게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.