본 논문의 목적은 과거의 산업 포트폴리오 수익률이 확률추세로부터 어떻게 전체 주식시장과 두 가지 거시경제 변수인 경기동행지수와 산업생산 등을 예측할 수 있는 지를 알아보는 데에 있다. 이를 위하여 본 연구에서는 연구모형을 설정한 후 세 가지 검정절차를 제시하고 이를 실증적으로 분석하였다. 당월의 전체 주식시장 수익률은 과거의 시차를 지닌 특정 산업부문 포트폴리오 수익률에 대하여 양(+)의 상관관계를 유지하고 있다는 '예측 1'과 전체 주식시장의 수익률은 특정산업부문의 수익률에 대하여 선행성을 지닐 수 없다는 '예측 2'에 대한 검정 결과는 '예측 1'과 '예측 2'가 지지되고 있음을 파악할 수 있었다. 그리고 산업별 포트폴리오 수익률과 거시경제변수 간의 높은 상관관계를 토대로 하여 전체 주식시장 수익률 예측을 가능하게 하는 업종 정보의 점진적 확산 현상이 발생하게 되는가를 검토하기 위하여 각 산업들의 포트폴리오 수익률과 전체 주식시장 수익률이 VAR 모형을 토대로 볼 경우 Granger 인과관계를 갖고 있는 지를 분석하였다. 분석결과 21개 업종은 각 산업별 포트폴리오 수익률이 전체 주식시장 수익률을 5% 수준에서 통계적으로 유의한 영향을 주고 있음을 알 수 있었다. 이들 21개의 산업별 포트폴리오 수익률은 경제적으로도 중요한 의미를 지니고 있어 산업제품의 가격 상승과 하락이 경제에 미치는 영향을 파악할 수 있다. 특히 음료 업종에서 전체 주식시장 수익률과 상호간의 인과성을 나타내었으며, 인터넷과 화장품 업종에서는 전체 주식시장 수익률이 이들 업종에 대하여 일방적인 영향을 보이고 있음을 알 수 있었다.
Roll의 비판 이후 실행된 많은 국내외 연구결과 CAPM으로 설명이 되지 않는 이례 현상(Anomaly)들이 발견되고 있다. 이례 현상들은 다 요인 모형(multi-factor model)과 같은 추가 위험 요인이론, 표본차이이론, 과잉반응 및 특성이론들로 설명되고 있고 이러한 이례 현상들은 재무관리의 지속적인 관심사인 미래의 주가수익률 예측과 밀접한 관계에 있다. 본 연구에서는 이례 현상들이 주가수익률에 미치는 영향을 알아보기 써하여 Haugen and Baker(1996)의 다 요인 및 수익률 추정 방법론을 국내 증권시장에 적용한 다 요인 모형과 $\beta$, 기업규모, PBR, 과거 1년 주가 수익률에 의한 단일 요인 모형을 이용하여 개별 기업의 포트폴리오 구성기준을 결정하고 이 기준에 의거하여 월별로 편입 주식들을 재조정한 포트폴리오들의 년간 누적 실제수익률 예측력을 비교 분석한 결과 다음과 같은 결과를 얻었다. 첫째, 다 요인모형의 경우 기대수익률이 높은 주식으로 구성된 포트폴리오가 기대수익률이 낮은 주식으로 구성된 포트폴리오보다 실제 년간 수익률이 높게 나타난 반면, $\beta$, 기업규모, PBR, 과거 1년 주가 수익률의 요인에 의한 단일 모형을 적용한 포트폴리오는 이들 순위와 실제 수익률간에는 상관성이 높지 않게 나타나 다요인 모형이 주가 수익률 예측력에 있어서 단일요인 모형보다 우수한 것으로 판단된다. 단일모형 중에서는 PBR을 이용한 포트폴리오가 $\beta$ 단일모형보다 좋은 주가수익률 예측력을 보여 주었다. 둘째, 주가 수익률을 결정하는 유의성있는 요인들은 당기순이익의 증감, 당해연도의 당기순이익의 분포, 자산증가율, 매매 유동성, 매출액 변동, 거래량 추세, 기업크기(시가총액), 과거 1개월간의 주가수익률, 자기자본증가율등으로 나타났다.
본 논문의 목적은 과거의 산업 포트폴리오 수익률이 확률추세로부터 어떻게 전체 주식시장과 두 가지 거시경제 변수인 경기동행지수와 산업생산 등을 예측할 수 있는 지를 알아보는 데에 있다. 이를 위하여 본 연구에서는 연구모형을 설정한 후 세 가지 검정절차를 제시하고 이를 실증적으로 분석하였다. 당월의 전체 주식시장 수익률은 과거의 시차를 지닌 특정 산업부문 포트폴리오 수익률에 대하여 양(+)의 상관관계를 유지하고 있다는 '예측 1'과 전체 주식시장의 수익률은 특정 산업부문의 수익률에 대하여 선행성을 지닐 수 없다는 '예측 2'에 대한 검정 결과는 '예측 1'과 '예측 2'가 지지되고 있음을 파악할 수 있었다. 그리고 산업별 포트폴리오 수익률과 거시경제변수 간의 높은 상관관계를 토대로 하여 전체주식시장 수익률 예측을 가능하게 하는 업종 정보의 점진적 확산 현상이 발생하게 되는가를 검토하기 위하여 각 산업들의 포트폴리오 수익률과 전체 주식시장 수익률이 VAR모형을 토대로 볼 경우 Granger 인과관계를 갖고 있는 지를 분석하였다. 분석결과 21개 업종은 각 산업별 포트폴리오 수익률이 전체 주식시장 수익률을 5% 수준에서 통계적으로 유의한 영향을 주고 있음을 알 수 있었다. 이들 21개의 산업별 포트폴리오 수익률은 경제적으로도 중요한 의미를 지니고 있어 산업제품의 가격 상승과 하락이 경제에 미치는 영향을 파악할 수 있다. 특히 음료 업종에서 전체 주식시장 수익률과 상호간의 인과성을 나타내었으며, 인터넷과 화장품 업종에서는 전체 주식시장 수익률이 이들 업종에 대하여 일방적인 영향을 보이고 있음을 알 수 있었다.>$mgN\;{\cdot}\;L^{-1}$ 및 0.000-0.804 $mgN\;{\cdot}\;L^{-1}$이였다. 규소농도는 0.0-6.2 $mgSi\;{\cdot}\;L^{-1}$의 범위로 3-5월에 매우 낮았으며, 계절적인 변화가 뚜렷히 나타났다. 저질의 입자는 0-125인 silt및 coarse silt로 이루어져 있으며, COD는 51.4-116.9 $mgO_2\;{\cdot}\;gdw^{-1}$로 평균 93.0 $mgO_2\;{\cdot}\;gdw^{-1}$ 이였다. 저질내의 TP및 TN의 농도는 각각 0.04-1.46 $mgP\;{\cdot}\;gdw^{-1}$ 및 0.12-1.03 $mgN\;{\cdot}\;gdw^{-1}$이었다. 표층의 엽록소 a의 정점별 평균값은 정점 1, 2 및 3에서 각각 15.6, 15.2 및 16.0 $mg\;{\cdot}\;m^{-3}$으로 유사하였다. 식물플랑크톤은 총 49종이 출현하였으며, 생물량은 50-23, 350 cells ${\cdot}\;mL^{-1}$로 2001년 9월에 가장 많았다. 이 시기의 우점종은 녹조류인 Schroederia judayi이였으며, 생물량은 20,417 cells ${\cdot}\;mL^{-1}$이였다. 송지호의 수질을 개선하기 위해서는 인위적으로 화학성층을 파괴시켜 심충에 용존산소를 공급시켜야 할 것으로 판단되며, 모래톱으로 인해 막혀져 있는 해수
본 연구는 우리나라 상장기업중 금융 보험업을 제외하고 비교적 상장기업수가 많은 9개 산업에서 임의로 선정한 180개 표본기업을 분석대상으로 하였다. 1989년 1월부터 1996년 12월까지를 분석대상기간으로 설정하여 베타계수 예측능력을 향상시키기 위한 회계위험변수모형의 예측능력을 평가하고 위험수준별 예측능력에 차이가 있는지도 분석하였다. 아울러 베타계수 추정시 사용된 수익률 측정간격에 빠른 베타계수의 안정성과 회계위험변수모형의 예측능력을 분식하였다. 본 연구의 중요한 결과를 요약하면 다음과 같다. 첫째, 포트폴리오를 구성한 경우 수익률 측정기간에 관계없이 일관되게 예측오차가 유의적으로 적게 나타나 회계위험변수모형의 베타계수 예측능력이 우수하였으며 베타계수예측에 회계 변수의 유용성이 확인되었다. 둘째, 위험수준에 따른 베타계수의 안정성 분석에서는 중위험집단의 베타가 안정성이 높았으며 고위험집단에서 예측오차가 가장 크게 나타나 불안정하였다. 회계위험변수모형의 예측능력은 위험수준에 관계없이 단순모형보다 우수하여 베타예측에 회계정보의 유용성을 일반화시킬 수 있을 것이다. 셋째, 수익률 측정간격에 따른 베타계수의 안정성과 예측능력 분석에서는 월별수익률을 이용하는 경우보다 주별수익률을 이용하는 경우 추정베타의 안정성이 높고 베타계수 예측모형의 예측능력이 향상되는 것으로 나타났다. 넷째, OLS베타를 수정하지 않고 이용하는 경우보다 Bayesian 기법으로 수정한 Bayesian수정 베타를 이용할 경우 예측오차가 감소하여 Bayesian 수정기법의 유용성이 확인되었다.
본 연구는 우리나라를 대상으로 장단기 스프레드와 신용스프레드가 경기변동에 대해 어떠한 예측력을 갖고 있는가를 살펴보았다. 이를 위해 1991년부터 2001년까지를 분석기간으로 하여 Probit 분석을 통해 금리스프레드와 경기변동과의 시차 및 불황확률을 추정하여 평가해 보았으며, 인과관계 검정을 시도해 보았다. 우선 금리스프레드와 경기변동에 대한 불황확률을 알아보기 위해서 Probit 모형을 이용하여 불황확률을 추정하였다. 그 결과 장단기 금리스프레드 중에서는 5년 만기 1종 국민주택채권수익률-콜금리(HCS)는 3개월, 5년 만기 1종 국민주택채권수익률-1년 만기 금융채수익률(HGS)은 7개월, 5년 만기 1종 국민주택채권수익률-1년 만기 통안증권수익률(HMS)은 9개월의 시차를 보이는 경우가 Pseudo $R^2$ 값이 가장 높게 나타났지만 불황확률을 토대로 경기 호황과 불황 국면을 비교해 본 결과 HMS는 Pseudo $R^2$의 값도 상대적으로 높았을 뿐만 아니라 매우 높은 경기변동 예측력을 보여주었다. HCS와 HGS의 경우에는 IMF 체제 전후의 불황기와 그 이후에 도래한 호황기는 예측력이 높게 나타났으나 1990년대 초반에는 제대로 불황확률을 예측하지 못하는 것으로 나타났다. 또한 3년 만기 회사채수익률-5년 만기 국민주택채권수익률(CHS)와 3년 만기회사채수익률 -3년 만기 금융채수익률(CGS)로 나타낸 신용 스프레드에서는 유의적인 결과를 도출하지는 못하였다. 한편 인과관계에서도 HCS, HGS, HMS 등의 장단기 스프레드는 경기변동에 대하여 일방적 원인변수로 작용하는 것으로 나타나 선행결합관계를 보여주었으나 CHS, CGS 등의 신용스프레드는 경기변동과 어떠한 유의적인 결합관계도 보여주지 못하였다. 따라서 장단기 스프레드는 경기변동을 예측하는데 유용한 정보를 제공하지만 신용스프레드는 경기변동을 예측하는데 도움을 주지 못하는 것으로 나타났다.
본 연구에서는 우리나라의 금융자산, 특히 회사채와 주식이 인플레이션과 관련하여 어떠한 행태를 보이는가를 실증적으로 살펴본다. 1976년부터 1992년까지의 기간중 채권 및 주식수익률에 피서가설이 성립하는가의 여부, 주식수익률과 기대인플레이션과 관련된 Fama의 허구성가설 및 Geske & Roll의 역인과성가설 등을 공적분관계검정 및 VAR모형의 예측오차 분산분해등을 통하여 포괄적으로 결정한다. 이를 위하여 본 연구는 다음과 같은 순서로 진행하였다. 첫째, 단순정태회귀분석을 통하여 우리나라 금융시장에서 주식이나 채권이 기대된 인플레이션이나 예상치 못했던 인플레이션에 대해 얼마나 인플레이션방어수단으로 유효한지를 살펴보았다. 우선, 회사채수익률의 경우 피서가설의 성립을 기각하기 어려웠다. 반면, 주식의 경우에는 피서가설이 성립될 수 없음은 물론이고, 대부분의 선진국가들처럼 기대인플레이션에 주식수익률이 만대방향으로 반응하는 것으로 나타났다. 주식수익률을 설명하는 변수에 예상되는 산업생산증가나 통화량증가를 나타내는 변수들을 추가하여도 주식수익률과 기대인플레이션간의 부의 관계는 여전히 유의적인 것으로 남아있었다. 따라서 파마의 주식수익률과 기대인플레이션간의 허위관계가설은 우리나라 주식시장에서는 적용되지 않는 것으로 나타났다. 둘째, 단순정태분석에서 활용된 여러 회귀식들이 가성적회귀관계(假性的回歸關係)를 나타내는 경우를 확인하기 위하여 공적분관계가 형성되는지를 검정하였다. 그 결과, 회사채수익률과 인플레이션은 공적분관계가설이 기각되지 않았으나, 주식수익률과 기대인플레이션간에는 공적분관계가 나타나지 않았다. 공적분관계에 입각하여 오차수정모형을 추정한 결과, 회사채수익률의 변화는 단기적인 인플레이션의 동태를 예측하는데 있어서 도움을 주지만, 기대인플레이션 및 예상산업생산증가률의 변화는 주식실질수익률의 단기적 동해예측에 개별적으로는 도움이 되지 못하였다. 마지막으로 여러 변수들의 관계를 사전적으로 설정하지 않고 VAR 모형의 오차분해를 통하여 인과관제를 분석한 결과, 주식수익률과 기대인플레이션이 허구적(虛構的)인 관계가 아님을 시사하고 있다. 그러나, 주식수익률변동은 예상산업생산증가에 의하여 어느정도 설명이 가능하고 대부분의 경제변수에 대하여는 외생적인 성격을 강하게 보여주고 있어서, 기대인플레이션과의 인과관계에 있어서도 선행적인 위치를 지지하고 있다.
이 논문에서는 1991년 1월부터 2000년 12월까지의 납세 후 CD수익률 자료와 소비자물가지수 자료를 사용하여 우리 나라 금융시장에서 단기적 피셔효과가 존재하는지를 검증하고자 시도하였다. Fama(1975)의 방법에 따라 3개월 물가상승률을 CD수익률에 관해 회귀분석한 결과, CD수익률이 미래 물가상승률의 예측치로서 충분한 역할을 하지 못한다는 결과를 얻었다. 단기적 피셔효과를 검증하기 위하여 CD수익률을 기대물가상승률에 관하여 회귀분석하였다. 기대물가상승률은 상수 및 시간추세와 계절성을 반영하는 부분과 확률적 부분으로 구분하고, 확률적 부분이 랜돔워크 모형에 따르는 경우와 AR(1) 모형에 따르는 경우에 대해 기대물가상승률을 구하였다. 랜돔워크모형에 의해 예측하든 AR(1)에 의해 예측하든 기대물가상승률의 회귀계수는 유의한 양(+)의 값이긴 1보다는 훨씬 작은 값으로 추정되었다. 이것은 우리나라의 CD수익률에 단기 피셔효과가 부분적으로만 존재하고 있다는 것을 의미한다. 그리고 AR(1)을 사용하여 예측한 기대물가상승률이 랜돔워크모형을 사용한 경우보다 나은 추정결과를 보여주고 있다.
변동성지수는 옵션가격에 내재된 미래 기초자산의 변동성을 나타내는 지수이며, 투자자들이 예상하는 향후 주가 변동 가능성을 측정한 시장의 기댓값이다. 현재 한국거래소(KRX)에서 한국시장구조에 맞는 변동성지수를 개발하여 2009년 4월 13일부터 변동성지수(VKOSPI)를 발표하고 있다. 본 연구는 2002년부터 2008년까지 일별 데이터를 이용하여 기업규모, 시장기치 대 장부가치 비율 및 베타의 특징들로 그룹화된 포트폴리오의 미래 수익률에 대한 변동성지수의 예측력을 검증하였다. 그 결과 VKOSPI의 변화율은 미래수익률에 대해 강한 음(-)의 예측력을 갖고 있는 것으로 나타났으며, 이러한 결과는 Ang et al.[2]의 결과와 일치하고, 이는 VKOSPI가 수익률 결정요인이라 할 수 있다. 시장총변동성 추정치의 부호에 대해 Ang et al.은 시장 총변동성위험과 개별주식 수익률간의 음(-)의 관계로 설명하였다. 이는 시장 총변동성위험이 높아질 때, 시장변동성과 상관관계가 높은 주식은 시장위험에 대한 주식의 민감도, 즉 베타가 낮아져 개별주식 수익률이 하락한다는 것이다. 또한 포트폴리오를 그룹화하는데 베타가 포함되어진다면, 미래 수익률에 대한 VKOSPI의 예측력이 강하다는 것으로 나타났다.
본 논문은 우리나라 주식시장을 대상으로 Haugen Baker(1996)가 제시한 기업특성요인모형을 적용하여 주식수익률 결정요인을 분석하였다. 분석기간은 1999년부터 2007년까지 총 8년간이며, 총 690개의 상장기업의 월별 자료를 이용하였다. 기존 연구에서 제시된 변수를 바탕으로 유동성, 위험, 과거주가, 가격수준, 수익성 등과 관련된 16개의 변수를 독립변수로, 690개 주식의 월별 수익률을 종속변수로 하여 시간가변 회귀분석을 통해 분석결과의 강건성을 높이고자 하였다. 본 연구의 결과는 다음과 같이 요약될 수 있다. 첫째, 기업특성정보가 주식수익률 결정에 미치는 사전적 영향을 분석한 결과 해당기업이 공개한 직전월의 기업특성 정보 중 당월의 주가에 유의적인 영향을 나타내는 기업특성은 유동성, 모멘텀 지표인 1개월, 3개월, 6개월 초과수익률, 주가 승수 중 PSR, PBR, 수익성을 나타내는 ROE와 EPS 등의 8개 요인이다. 예측된 수익률을 이용하여 구축한 10개의 분위별 포트폴리오를 대상으로 실현수익률을 분석한 결과 예측수익률이 높을수록 실현된 수익률이 일관되게 높게 나타나는 것으로 분석되었다. 둘째, Haugen Baker가 제안한 기업특성모형을 이용한 주가예측모형을 바탕으로 구성된 포트폴리오를 Fama French가 제안한 3요인 모형에 적용시킨 결과 수익률이 높을 것으로 예측된 포트폴리오의 실현수익률이 높게 나타남을 확인하였다. 즉, 우리나라 주식시장의 수익률을 예측하는 데는 Haugen Baker의 기업특성 요인모형을 응용한 모형이 더욱 적합할 수 있으며, 이를 이용하는 것이 실무적으로도 유용성이 높을 것으로 기대할 수 있다. 본 연구는 기존연구를 보완하여 보다 강건한 예측 및 운영성과를 보여주기 위해 노력하였다. 이를 위해, 시간 가변적으로 (1) 요인프리미엄을 추정, (2) 수익률예측 및 포트폴리오 조정, (3) 실현수익률 측정의 과정을 반복적으로 수행하였으며, 예측수익률이 높은 포트폴리오의 실현수익률이 상대적으로 높게 나타나는 일관된 결과를 강건하게 보여주고 있다.
과거 주가 데이터와 금융 관련 빅 데이터를 사용해 머신러닝 기법으로 주식시장을 예측하는 연구는 다양하게 있어 왔지만, HTS와 MTS를 통해 거래가 가능한 주가지수 연동 ETF가 생기면서 주가지수를 예측하는 연구가 최근 주목받고 있다. 본 논문에서는 KOSPI 연동 ETF를 거래할 목적으로 KOSPI의 상승 예측을 위한 머신러닝 모델과 하락예측을 위한 모델을 각각 구현한다. 이들 모델은 매개변수의 그리드 탐색을 통해 최적화 된다. 또한 정밀도를 개선해 ETF 거래 수익률을 높일 수 있도록 개별 모델들을 조합한 하이브리드 머신러닝 모델을 제안한다. 예측 모델의 성능은 정확도와 ETF 거래 수익률에 큰 영향을 미치는 정밀도로 평가된다. 하이브리드 상승 예측 모델의 정확도와 정밀도는 72.1 %와 63.8 %이고 하락 예측 모델은 79.8 %와 64.3 %이다. 하이브리드 하락 예측 모델에서 정밀도는 개별 모델보다 최소 14.3 %, 최대 20.5 % 개선되었다. 테스트 기간에 하이브리드 모델은 하락에서 10.49 %, 상승에서 25.91 %의 ETF 거래 수익률을 보였다. 인버스×2와 레버리지 ETF로 거래하면 수익률을 1.5 ~ 2배로 높일 수 있다. 하락예측 머신러닝 모델에 대한 추가 연구로 수익률을 더 높일 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.