• Title/Summary/Keyword: 수율 보장 스케줄러

Search Result 3, Processing Time 0.016 seconds

Performance Evaluation of Simple-Relay Aided Resource Allocation and Throughput Guarantee Scheduler in IEEE 802.16 TDD-OFDMA Downlink (IEEE 802.16 TDD-OFDMA 하향링크에서의 단순 릴레이 협력 자원 관리와 수율 보장 스케줄러를 이용한 서비스 커버리지 및 섹터 수율에 관한 연구)

  • Ki, Young-Min;Byun, Dae-Wook;Kim, Dong-Ku;Son, Haeng-Seon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.85-94
    • /
    • 2006
  • Simple-relay aided resource allocation (SRARA) schemes are incorporated with throughput guarantee scheduling (TGS) in IEEE 802.16 type TDD-OFDMA downlink to enhance service coverage, where the amount of resources at each relay is limited due to either its available power which is much smaller than base station (BS) power or the required overhead The performance of SRARA schemes is evaluated with both proportional fair (PF) and TGS schedulers at 64 kbps and 128 kbps user throughput requirements. For SRARA with RSs of relatively lower power, a scheme putting total power into only one subchannel shows larger coverage than when both subchnnels are used in a manner of equal power allocation, while the RS with evenly power-allocated two subchannels could provide larger coverage gain for a relatively higher power. In a lower target (64kbps), more improvement comes from relay scheme rather than scheduler design. For a relatively higher level (128 kbps), it comes from scheduler design rather than relay.

Coverage Enhancement in TDD-OFDMA Downlink by using Simple-Relays with Resource Allocation and Throughput Guarantee Scheduler (TDD-OFDMA 하향링크에서의 단순 릴레이를 이용한 자원 할당과 수율 보장 스케줄러를 사용한 서비스 커버리지 향상에 관한 연구)

  • Byun, Dae-Wook;Ki, Young-Min;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.275-281
    • /
    • 2006
  • Simple-relay aided resource allocation (SRARA) schemes are incorporated with throughput guarantee scheduling (TGS) in IEEE 802.16 type time division duplex - orthogonal frequency division multiple access (TDD-OFDMA) downlink in order to enhance service coverage, where the amount of resources for relaying at each relay is limited due to either its available power which is much smaller than base station (BS) power or the overhead required for exchanging feedback information. The performance of SRARA schemes is evaluated with schedulers such as proportional fair (PF) and TGS at 64kbps and 128kbps user throughput requirements when total MS power is set to 500mW or 1 W. For 64kbps throughput requirement level, more improvement comes from relay than scheduler design. For 128kbps case, it comse from scheduler design than relay due to the fact that simple relay can't help using strictly limited amount of resources for relaying function.

  • PDF

The Channel Scheduler based on Water-filling Algorithm for Best Effort Forward Link Traffics in AMC/TDM/CDM System (AMC/TDM/CDM 다중접속방식에서의 Best Effort 순방향 서비스를 위한 Water-filling Based 채널 스케줄러)

  • Ma, Dongl-Chul;Ki, Young-Min;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2003
  • The channel scheduler is suggested the radio resource management method in order to provide service with guaranteeing fairness and throughput to the users who use limited wireless channel. Proportional fairness scheduling algorithm is the channel scheduler used in the AMC(Adaptive Modulation and Coding)/TDM system, and this algorithm increases the throughput considering the user's time fairness. In this paper is suggested the channel scheduler combining CDM scheme available in AMC/TDM/CDM system. Unlike the system which only uses TDM which provide the only one user at the same slot, this scheduler can service a lot of users since this uses the CDM scheme with multi-cord channel. At every moment, allocation of transmission power to multi-channel users is problematic because of CDM scheme. In this paper, we propose a water-filling scheduling algorithm to solve the problem. Water-filling fairness(WF2) scheduling algorithm watches the average channel environment. So, this modified method guarantees fairness for each user in terms of power and service time.

  • PDF