• 제목/요약/키워드: 수용액 화학

검색결과 1,034건 처리시간 0.029초

염화(鹽化)알루미늄 수용액(水溶液)으로부터 Aluminum Citrate의 합성(合成) 연구(硏究) (A Study on the Synthesis of Aluminum Citrate from Aluminum Chloride Solutions)

  • 이화영
    • 자원리싸이클링
    • /
    • 제18권6호
    • /
    • pp.18-23
    • /
    • 2009
  • 염화알루미늄 수용액으로부터 알루미늄 유기화합물인 구연산알루미늄 합성실험을 수행하였다. 수용액중 알루미늄 농도와 구연산 농도비율은 몰비 2.5가 되도록 첨가해 주었으며, 합성된 구연산알루미늄은 화학분석, X-선 회절분석, 입도분석 및 SEM 분석을 통하여 시료특성을 평가하였다. 알루미늄 수용액으로부터 구연산알루미늄을 합성하기 위해서는 에탄올/알루미늄 수용액 혼합비율을 4.0이상으로 유지하여야 하는 것으로 나타났다. 또한, 97% 이상의 회수율을 얻기 위해서는 혼합액의 pH를 7.0이상으로 조절하여야 하는 것으로 나타났다. 합성반응을 통해 얻은 구연산알루미늄의 화학분석결과 $NH_4$ 17.0%, Al 4.01% 및 C 25.7%이었으며, 이의 화학식은 $(NH_4)_5Al(C_6H_4O_7)_2{\cdot}2H_2O$임을 확인할 수 있었다.

토양 특성에 따른 Trichloroethylene (TCE:) 흡착능 비교

  • 정현정;이민희
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.362-365
    • /
    • 2002
  • 토양의 물리/화학적 특성에 따른 토양의 유기오염물 흡착능 변화를 규명하기 위하여, 토양 내 clay 함량 및 유기물 함량변화, 수용액 내 TCE 농도변화에 따른 TCE 의 토양내 흡착량 변화를 측정하였다. 수용액의 pH와 실내온도는 일정하게 유지시켰으며 clay는 표면적이 다른 Ca-montmorillonite, Na-montmorillonite, kaolin을 이용하였고, 유기물질로는 활성탄을 사용하였다. 일정한 토양성분과 실제토양에 대해 수용액 내 TCE의 농도를 변화시켜 농도변화에 따른 흡착량 변화를 측정하였다. 실험결과 유기물과 점토함량의 증가에 따라 흡착량은 모두 증가하였으나 활성탄에 의한 TCE 흡착량이 점토에 비해 매우 높았으므로 유기물에 의한 TCE 흡착영향이 점토에 의한 흡착 영향보다 큰 것으로 나타났다. TCE 농도변화에 따른 흡착결과는 실제토양과 모사토양에서 모두 농도가 증가함에 따라 흡착 증가율이 증가하다가 감소하는 Langmuir isotherm 형태를 보여 주었다.

  • PDF

수용액에서 질산성 질소의 전기화학적 환원거동 (Electrochemical Reduction of Nitrate Ion in an Aqueous Solution)

  • 박정길;전치중;이철경
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2003년도 추계정기총회 및 국제심포지엄
    • /
    • pp.246-251
    • /
    • 2003
  • 전기분해법을 이용하여 수용액 중의 질산성 질소의 환원거동에 대한 연구를 통하여 수용액중의 질산 함량을 제어하는 연구를 수행하였다. 촉매전극을 채택한 복극전해조에서 30분의 조업에 질산 100ppm 이하의 저농도 용액은 70%, 300ppm 이상의 고농도의 경우는 90%까지 질소를 용이하게 제거할 수 있었다. 초기 질소농도가 증가하면서 한계전류밀도도 크게 증가하였으며, pH가 감소할수록 환원전류가 증가하였다. 그리고 수용액의 pH는 질소 환원반응기구에 큰 영향을 주는 것으로 판명되었으며, 산성에서는 질소형태로 중성 혹은 염기성에서는 암모니아 형태로 환원되는 것으로 추정된다.

  • PDF

강산의 이온화도와 이온화 상수에 대한 화학 교과서 내용 및 교사들의 인식 분석 (Analysis of Chemistry Textbook Content and Teachers' Recognitions about Ionization and Ionization constant of Strong Acid)

  • 백성혜;고형석;전민철
    • 대한화학회지
    • /
    • 제57권2호
    • /
    • pp.279-288
    • /
    • 2013
  • 이 연구에서는 1945년 교수요목기부터 2009 개정 교육과정까지 개발된 화학 교과서에서 강산의 이온화도와 이온화 상수 값이 어떻게 제시되었는지 분석하였다. 또한 설문지를 통해 화학 교사들에게 수용액에서 강산의 세기를 비교하도록 하였다. 그리고 이온화도와 이온화상수 값이 호환되지 않는 이유에 대한 교사들의 인식을 알아보았다. 연구 대상은 화학 교사 46명이었다. 연구 결과, 교사들은 교과서에 제시된 이온화 상수 값과 이온화도를 근거로 수용액에서 강산의 세기를 구분하였으며, 교과서에 제시된 이온화 상수 값이 이온화도와 서로 호환되지 않는 문제를 생각하지 못하거나, 문제로 인식하는 경우에도 그에 대한 해결을 하지 못하고 실험 오차나 측정 오차로 생각하였다.

고분자전해질 연료전지에서 고분자 막과 전극의 철 이온 오염 및 산 세척 효과 (Iron Ion Contamination and Acid Washing Effect of Polymer Membrane and Electrode in Polymer Electrolyte Fuel Cell)

  • 유동근;박민정;오소형;박권필
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.20-24
    • /
    • 2022
  • 고분자전해질연료전지 (PEMFC) 장기사용과정에서스택요소의부식및공급가스의오염에의해막전극합체 (MEA)의 화학적 열화가 발생한다. 본 연구에서는 화학적으로 열화된 MEA를 산 세척해서 성능을 회복시킬 수 있는지 연구하였다. 철 이온을 오염시키고 황산 수용액으로 세척하여 PEMFC 셀에서 성능을 측정해 비교했다. 0.5 ppm의 철 이온 오염에 의해 약 25%의 성능 감소가 있었고 0.15 M 황산 세척에 의해 97.1% 성능회복이 가능했다. 고분자 막의 철 이온 오염에 의해 막 저항이 증가했고, 저농도 황산 수용액 세척에 의해 전극 촉매의 손실을 최소화하면서 막에서 철 이온을 세척함으로써 이온전도도가 회복되었다. PEMFC MEA의 화학적 오염에 의한 내구성 감소를 산 세척에 의해 해결할 수 있는 가능성을 확인하였다.

화학발광법에 의한 수용액 중의 선택적 수은(II) 이온 정량 (Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method)

  • 김경민;장택균;김영호;오상협;이상학
    • 분석과학
    • /
    • 제24권4호
    • /
    • pp.243-248
    • /
    • 2011
  • 루미놀 화학발광 시스템(luminol-$H_2O_2$)을 이용하여 수용액 중의 수은(II) 이온을 선택적으로 정량분석 하였다. 루미놀과 과산화수소의 반응에서 촉매작용을 하는 구리(II), 철(III), 크롬(III) 이온 등 다양한 금속이온의 농도를 정량분석한 연구결과가 보고되어 있다. 본 연구에서는 수은(II) 이온이 루미놀과 과산화수소의 반응에서 다른 금속이온과 같이 촉매작용을 하는 것을 관찰하였으며, 수용액 중 수은(II) 이온의 정량분석 조건을 최적화하기 위하여 반응시간, pH등에 따른 영향을 조사하였다. 또한 수은이온이 갖는 1가와 2가 산화수 중에서 수은(I) 이온은 루미놀과 과산화수소의 반응에 있어서 촉매작용을 하지 않았을 뿐만 아니라 반응에 어떠한 영향도 미치지 않았다. 또한 수은(I)과 수은(II) 이온이 공존하는 수용액 중의 수은(II) 이온의 분석과정에서 수은(I) 이온의 방해 효과는 관찰되지 않았다. 이를 바탕으로 하여 루미놀 화학발광 시스템을 이용하여 수용액 중의 수은(II) 이온만 선택적으로 분석하는 것이 가능하다는 결과와 함께 화학발광분석법과 ICP분석법으로부터 얻은 실험결과를 비교하여 수용액 내에 존재하는 수은 이온의 산화수별 농도를 확인할 수 있다. 루미놀 화학발광 시스템의 최적 분석조건 하에서, 수용액 중의 선택적 수은(II) 이온의 정량분석을 위해 얻은 검정곡선에서 직선성이 성립하는 농도범위는 $1.25{\times}10^{-5}{\sim}2.50{\times}10^{-3}M$이며, 이때 상관계수는 0.991이고, 검출한계는 $1.25{\times}10^{-7}M$이었다.