• Title/Summary/Keyword: 수온 성층

Search Result 175, Processing Time 0.031 seconds

On the Marine Environment and Distribution of Phytoplankton Community in the Northern East China Sea in Early Summer 2004 (이른 여름 동중국해 북부해역의 해양환경과 식물플랑크톤 군집의 분포특성)

  • Yoon, Yang-Ho;Park, Jong-Sick;Soh, Ho-Young;Hwang, Doo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.100-110
    • /
    • 2005
  • We carried oui a study on the marine environment and distribution of phytoplankton community, such as chlorophyll a, species composition, dominant species and standing crops in the Northern East China Sea during early summer of 2004. According to the analysis of a T-S diagram, three characteristics of water masses were identified. We classified them into the coastal water mass, the cold water mass and the oceanic water mass. The first was characterized by the low temperature and the low salinity originated from China territory, the secondary was characterized by the low temperature, the low salinity and the high density originated from bottom cold water of Yellow Sea, and the third was done by the high temperature and salinity originated from Tsushima warm current. The internal discontinuous layer among them was farmed at the intermediate depth (about $5{\sim}30m$ layer). And the thermal front by upwelling region between the cold water mass and Tsushima warm current appeared in the central parts of the South Sea of Korea. The Phytoplankton community in the surface and stratified layers was a total of 44 species belonging to 26 genera. Dominant species were Prorocentrum triestinum, Scrippsiella trochoidea, Skeletonema costatum & Leptocylindrus mediterraneus. Standing crops of phytoplankton in the surface layer fluctuated between $0.3{\times}10^3$ cells/L and $10.8{\times}10^3$ cells/L. Diatoms appeared mainly in the Tsushima warm current regions, and flagellates occurred in the frontal zone and the low salinity regions where was the transfer areas of Chinese continental coastal waters. Chlorophyll a concentration by controlled phytoflagellate ratio in the South Sea of Korea was high values in the frontal zone and sub-surface layer. It was high concentration in the upwelling and coastal waters regions, but low concentration in the Tsushima warm current regions. The Chl-a maximum layers appeared in the thermochline depth or sub-surface layer lower than thermocline. The phytoplankton production in the South Sea of Korea was controlled by the expanded coastal waters of Chinese Continent which include a high concentrations of nutrients.

  • PDF

First Observational Finding of Submesoscale Intrathermocline Eddy in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 아중규모 중층성 소용돌이 발견)

  • PARK, JONGJIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.332-350
    • /
    • 2019
  • Zonal hydrographic section measurements at $39.7^{\circ}N$ were conducted between $129.0^{\circ}E$ and $131.3^{\circ}E$ from August 7 to 25 in 2017 using an underwater glider. The glider traveled about 440 km for about 18 days along the 106 line of the regular shipboard measurements in the National Institute of Fishery Science (NIFS) and obtained twice a hydrographic section with high horizontal resolution. Even under the strong East Korea Warm Current with maximum speed of 0.8 m/s across the section, the glider successfully maintained the designated path within an RMS distance of 400 m. By comparing with the NIFS shipboard hydrographic section, it is confirmed that high spatial resolution measurements obtained from a glider were necessary to properly observe front and eddy variability in the East Sea where a typical spatial scale is smaller than the open oceans. From the glider section measurements, a new lens-shaped eddy was found in the thermocline. The lens-shaped anticyclonic eddy had 10~13 km in horizonal width and about 200 m in height like a typical submesoscale eddy resided within the thermocline, which was firstly named as Korea intrathermocline eddy (Keddy). The Keddy has the distinguishing characteristics of a typical intrathermocline eddy, such as a central core with anomalously weak stratification, a convex shaped lens bounded by the stratification anomaly, an interior maximum of velocity at 170 m, no surface appearance of the geopotential field, a small or comparable horizontal width relative to the first baroclinic Rossby radius of deformation, and the Rossby nubmer of 0.7.

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.

Limno-Biological Investigation of Lake Ok-Jeong (옥정호의 육수생물학적 연구)

  • SONG Hyung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Limnological study on the physico-chemical properties and biological characteristics of the Lake Ok-Jeong was made from May 1980 to August 1981. For the planktonic organisms in the lake, species composition, seasonal change and diurnal vertical distribution based on the monthly plankton samples were investigated in conjunction with the physico-chemical properties of the body of water in the lake. Analysis of temperature revealed that there were three distinctive periods in terms of vertical mixing of the water column. During the winter season (November-March) the vertical column was completely mixed, and no temperature gradient was observed. In February temperature of the whole column from the surface to the bottom was $3.5^{\circ}C$, which was the minimum value. With seasonal warming in spring, surface water forms thermoclines at the depth of 0-10 m from April to June. In summer (July-October) the surface mixing layer was deepened to form a strong thermocline at the depth of 15-25 m. At this time surface water reached up to $28.2^{\circ}C$ in August, accompanied by a significant increase in the temperature of bottom layer. Maximum bottom temperature was $r5^{\circ}C$ which occurred in September, thus showing that this lake keeps a significant turbulence Aehgh the hypolimnial layer. As autumn cooling proceeded summer stratification was destroyed from the end of October resulting in vertical mixing. In surface layer seasonal changes of pH were within the range from 6.8 in January to 9.0 in guutuost. Thighest value observed in August was mainly due to the photosynthetic activity of the phytoplankton. In the surface layer DO was always saturated throughout the year. Particularly in winter (January-April) the surface water was oversaturated (Max. 15.2 ppm in March). Vertical variation of DO was not remarkable, and bottom water was fairly well oxygenated. Transparency was closely related to the phytoplankton bloom. The highest value (4.6 m) was recorded in February when the primary production was low. During summer transparency decreased hand the lowest value (0.9 m) was recorded in August. It is mainly due to the dense blooming of gnabaena spiroides var. crassa in the surface layer. A. The amount of inorganic matters (Ca, Mg, Fe) reveals that Lake Ok-Jeong is classified as a soft-water lake. The amount of Cl, $NO_3-N$ and COD in 1981 was slightly higher than those in 1980. Heavy metals (Zn, Cu, Pb, Cd and Hg) were not detectable throughout the study period. During the study period 107 species of planktonic organisms representing 72 genera were identified. They include 12 species of Cyanophyta, 19 species of Bacillariophyta, 23 species of Chlorophyta, 14 species of Protozoa, 29 species of Rotifera, 4 species of Cladocera and 6 species of Copepoda. Bimodal blooming of phytoplankton was observed. A large blooming ($1,504\times10^3\;cells/l$ in October) was observed from July to October; a small blooming was present ($236\times10^3\;cells/l$ in February) from January to April. The dominant phytoplankton species include Melosira granulata, Anabaena spiroides, Asterionella gracillima and Microcystis aeruginota, which were classified into three seasonal groups : summer group, winter group and the whole year group. The sumner group includes Melosira granulate and Anabaena spiroides ; the winter group includes Asterionella gracillima and Synedra acus, S. ulna: the whole year group includes Microtystis aeruginosa and Ankistrodesmus falcatus. It is noted that M. granulate tends to aggregate in the bottom layer from January to August. The dominant zooplankters were Thermocpclops taihokuensis, Difflugia corona, Bosmina longirostris, Bosminopsis deitersi, Keratelle quadrata and Asplanchna priodonta. A single peak of zooplankton growth was observed and maximum zooplankton occurrence was present in July. Diurnal vertical migration was revealed by Microcystis aeruginosa, M. incerta, Anabaena spiroides, Melosira granulata, and Bosmina longirostris. Of these, M. granulata descends to the bottom and forms aggregation after sunset. B. longirostris shows fairly typical nocturnal migration. They ascends to the surface after sunset and disperse in the whole water column during night. Foully one species of fish representing 31 genera were collected. Of these 13 species including Pseudoperilnmpus uyekii and Coreoleuciscus splendidus were indigenous species of Korean inland waters. The indicator species of water quality determination include Microcystis aeruginosa, Melosira granulata, Asterionelta gracillima, Brachionus calyciflorus, Filinia longiseta, Conochiloides natans, Asplanchna priodonta, Difflugia corona, Eudorina elegans, Ceratium hirundinella, Bosmina longirostris, Bosminopsis deitersi, Heliodiaptomus kikuchii and Thermocyclops taihokuensis. These species have been known the indicator groups which are commonly found in the eutrophic lakes. Based on these planktonic indicators Lake Ok-Jeong can be classified into an eutrophic lake.

  • PDF

The Limnological Survey of a Coastal Lagoon in Korea (3): Lake Hwajinpo (동해안 석호의 육수학적 조사 (3): 화진포호)

  • Kwon, Sang-Yong;Lee, Jae-Il;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.12-25
    • /
    • 2004
  • Physicochemical parameters, plankton biomass, and sediment were surveyed from 1998 to 2000 at two months interval in a eutrophic coastal lagoon(Lake Hwajinpo, Korea). The lake is separated from the sea by a narrow sand dune. Littoral zone is well vegetated with leafing-leaved aquatic plants. The lake basin is divided into two subbasins by a shallow sill. It has intrusion of seawater by permeation and stormy waves. Stable chemoclines are formed by salinity difference at 1m depth all the year round. DO was often very low (< 1 mg$O_2\;L^{-1}$) at hypolimnion. Temperature inversions were observed in November. Nitrate and ammonium concentrations were very low(< (1.1 mgN $L^{-1}$), even though TN was usually 2.0 ${\sim}$ 3.5 mgN $L^{-1}$. TN/TP was generally lower than the Redfield ratio. Transparency was 0.2 ${\sim}$ 1.7 m, and COD, TP, and TN of sediment were 3.1 ${\sim}$ 40.3 mg$O_2\;g^{-1}$, 0.91 ${\sim}$ 1.39 mgP $g^{-1}$, and 0.34 ${\sim}$ 3.07 mgN $g^{-1}$, respectively. Phytoplankton chlorophyll- a concentrations were mostly over 40 mg $m^{-3}$. Two basins showed different phytoplankton communities with Oscillatoria so., Trachelomonas sp., Schizochlamys gelatinosa, and Anabaena spiroides dominant in South basin, and with Trachelomons sp., Schroederia so., schizochlamys gelatinosa, and Trachelomonas sp. dominant in the North basin. The seasonal succession of phytoplankton was very fast, possibly due to sudden changes in physical conditions, such as wind, turbidity, salinity and light.

Seasonal Distributional Characteristics of Phytoplankton Adjacent to the Oyster Farming Area of Hansan-Geoje Island (한산도-거제도 동부 굴 양식장주변에서 식물플랑크톤의 계절적 분포특성)

  • Lim, Young Kyun;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.647-658
    • /
    • 2018
  • The aim of this study is to investigate the seasonal changes of phytoplankton communities based on the environmental changes in a dense oyster farming area (Hansan-Geoje Island) from June to December 2016. The water temperature varied from $14^{\circ}C$ to $28.8^{\circ}C$ and its salinity ranged from 29.4 to 34.2 psu. Nitrate+nitrite was kept at c.a. $3.0{\mu}M$ on the surface layer from June to July, below the concentration limit in August and early September, and then gradually increased from late September. Ammonia was high on July 20 and August 10, and its seasonal characteristics were not clear. Phosphate ranged from 0.01 to $0.7{\mu}M$ on the surface layer, and its seasonal changes were similar to those of nitrate+nitrite. Mean silicate concentrations were $10.7{\mu}M$ on the surface and $15.7{\mu}M$ in the bottom layer, and it was not acted as a limiting factor for the growth of phytoplankton. Among the phytoplankton community, Bacillariophyceae, Dinophyceae and Cryptophyceae was 61.2%, 22.5%, and 13.6%, respectively. In late June, dinoflagellate Prorocentrum donghaiense was dominant in the outer waters(St. T1), later on, Cryptomonas spp. and Chaetoceros spp. were dominant, respectively. From late September to October, diatoms Pseudo-nitzschia spp. and Chaetoceros spp. were stimulated under non-stratified condition after the typhoon. In December, A. sanguinea was found to be $1.7{\times}10^5cells\;L^{-1}$. Seasonally, relative high phytoplankton biomass may be favorable to maintain high production of filter feeder oyster in the dense oyster farming areas of Hansan and Geoje Island.

Phytoplankton Response to Short-term Environmental Changes in the Vicinity of a Fish Cage Farm of Tongyeong Obi in Summer (통영 오비도 어류양식장 주변에서 하계 수계 내 단주기 환경요인의 변화에 따른 미세조류 반응)

  • Lee, Minji;Baek, Seung Ho
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 2017
  • In order to assess the potential environmental factors in the vicinity of a fish cage farm, we investigated the biotic and abiotic factors during a short-term period in summer 2016 in two inner stations of Tongyeong Obi. High water temperature on August 10th was apparent among the full depth of up to 29℃, which might have been related to the abnormally high temperatures of large amounts of the Changjiang River discharge along the Tongyeong coast. The concentration of nitrate+nitrite, ammonium, phosphate, and silicate ranged from 0.08 to 5.11 μM, 0.08 to 34.62 μM, 0.01 to 1.15 μM, and 1.46 to 31.79 μM, respectively. The nutrients were mainly supplied by precipitation and leaching from the bottom sediments in the fish culture farm area. It was not retained for a long duration because of the phytoplankton consumption and diffusion by water currents. The chlorophyll a concentration varied from 0.49 ㎍ l-1 to 7.39 ㎍ l-1. At that time, Chaetoceros debilis, C. pseudocurvisetus, and Pseudo-nitzschia delicatissima were rapidly proliferated and reached the level of 4.74 × 109 cells l-1. In particular, the lowest dissolved oxygen was recorded at 4.52 ㎍ l-1 at the bottom layer after bloom. Therefore, even though phytoplankton blooms in summer have frequently occurred in a fish culture farm area, the oxygen-deficient environments were not found in neither the surface nor bottom layers, which implied that the water masses might be well exchanged from the mouth of the northwest and southeast between Obi and Mireuk Island in the study area.

Spatial and Temporal Variability of Residual Current and Salinity according to Freshwater Discharge in Yeoungsan River Estuary (방류 유무에 따른 영산강 하구역의 시공간적 잔차류 및 염분 변화)

  • Kim, Jong-Wook;Yoon, Byung Il;Song, Jin Il;Lim, Chae Wook;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.103-111
    • /
    • 2013
  • In this study, field measurements were conducted in the section about 7 km from sea dike to westward. The observations of along channel current were carried out, and water temperature and salinity were measured simultaneously at 10 stations during one tidal cycle, and sampling interval is 1 hour. The maximum ebb current is about 1.5 m/s at the surface layer but flood current is 0.4 m/s at the bottom layer during discharge period. Residual current during river discharge shows two layer structures which is typical characteristic of the estuary system. On the other hand, residual current during a period with no discharge has shown multi-layer structure different from general estuarine systems. The distribution of high salinity can be seen at the bottom layer as the effect of discharge does not reach down to the bottom layer during discharge. As a result, freshwater is not effected at the bottom layer during observation, and mixing of surface layer to bottom layer is reduced by stratification.

Calibration of WASP7 Model using a Genetic Algorithm and Application to a Drinking Water Resource Reservoir (유전알고리즘을 이용한 WASP7 모형의 보정과 상수원 저수지에 대한 적용)

  • Bae, Sang-Mok;Cho, Jae-Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.6
    • /
    • pp.432-444
    • /
    • 2014
  • When the water quality modelling is done with a manual calibration, it is possible that the researcher's opinion may affect the objectivity of the research. Hence, the role of the automatic calibration is highly important. This research applies a technique to automatically calibrate the water quality parameters by implementing an optimization method. This involves estimating the optimum water quality parameters targeting influential parameters towards the lake's BOD, DO, Phosphorus, Nitrogen and Phytoplankton. To accurately calculate the water temperature and hydraulic characteristics of a deep, stratifying lake, EFDC, a 3-dimensional hydraulic model which can be linked to the WASP7 was applied. With EFDC, the segment of the lake is formed and utilized as an input data of the WASP7. For the calibration of the water quality parameters of the WASP7, an influence coefficient algorithm and a genetic algorithm was applied. Of the five water quality variables for calibration, the normalized residuals of the observed and calculated values of DO, TN, CBOD were relatively small and the three water quality variables were calibrated properly. Yet the accuracy of the calibration of TP and Chl-a was relatively low.

ILLUDAS-NPS Model for Water Quality in Urban drainage (도시유역의 수질해석을 위한 ILLUDAS-NPS 모형)

  • Kim Tae-Hwa;Lee Jong-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.482-486
    • /
    • 2005
  • 불투수지역의 증가에 따른 도시지역의 비점오염원 해석 및 예측은 수자원 관리측면에서 중요성이 증가하고 있다. 그러나, 실측자료의 부족, 오염물질 발생경로의 불명확, 간헐성, 강우 및 유역특성에 따라 오염부하량 및 첨두농도 등의 변화가 심하므로 인하여 연구에 어려움이 많은 실정이다. 이를 극복하기 위해서는 장기적인 자료수집과 국내실정에 맞는 모형개발이 이루어져야 할 것이다. 따라서, 본 연구에서는 초기강우에 의한 수질항목별 오염부하량 및 농도계산이 가능한 ILLUDAS-NPS 모형을 개발하였다. 본 모형은 국내의 도시지역 유출해석에 주로 사용되는 ILLUDAS 모형에 건기 및 우기시의 수질해석 과정들을 추가하여 해석되어 진다. 건기시의 경우 유량 및 수질 계산은 계수지정법을 사용하였으며, 우기시의 경우 유량계산은 기존 ILLUDAS 모형의 알고리즘을 이용하였고, 수질 계산은 일일 오염물 축적법과 쓸림방정식을 적용하여 계산시간별 오염물질 부하량 및 농도 등을 계산하였다. 모형의 검정을 위하여 홍제천 시험유역의 총 3가지 강우사상을 대상으로 검토한 결과 총부하량, 첨두농도, 첨두농도 발생시간 등에서 전반적으로 실측치와 유사한 결과를 얻을 수 있었다. 또한, ILLUDAS-NPS 모형과 SWMM, STORM 등의 기존 도시유출$\cdot$수질 모형들에 의한 결과들의 비교에서 SWMM 모형과 다소의 차이는 있으나 대부분 잘 일치함을 확인할 수 있었다. 추후, 합리적이고 보다 정확한 비점오염 해석을 위하여 도시지역의 건거시 오염물질의 축적율 및 초기강우에 의한 오염물질 쓸림량 등에 관한 실험 및 현장자료 축적이 필요하다.월이 긴 것으로 나타났다. 이러한 현상은 유입수가 저수지로 유입되면서 초기수위가 높은 경우에 운동량이 상대적으로 많이 소멸되기 때문으로 판단된다. 또한 탁수층의 두께도 8월 성층의 경우가 상대적으로 큰 것으로 나타났다. 이는 중층의 8월 수온분포 또는 밀도분포가 상대적으로 균일하기 때문에 연직방향 이송$\cdot$확산이 많이 이루어졌기 때문으로 판단된다.이는 토성간의 침투속도 및 투수속도의 경향이 반영된 것이다. 경사에 따라서는 경사도가 증가할수록 지수적으로 감소하였으며 $10\% 경사일 때를 기준으로 $I(mm)=I_{10}{\times}1.17{\times}e^{-0.0164s(\%)}$로 나타났다. 같은 조건에서 강우량과 유거수의 관계는 $Ro_{10}(mm)=5.32e^{0.11R(mm)}(r^2=0.69)$로 나타났다. 이는 토양의 투수특성에 따라 강우량 증가에 비례하여 점증하는 침투수와 구분되는 현상이었다. 경사와 토양이 같은 조건에서 나지의 경우 역시 $Ro_{B10}(mm)=20.3e^{0.08R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10

  • PDF