• Title/Summary/Keyword: 수온 변동

Search Result 592, Processing Time 0.026 seconds

Stochastic Properties of Water Quality Variation in Downstream Part of Han River (한강 하류부의 수질변동에 대한 추계학적 특성(II) - 특히 뚝도 및 노량진 지점의 DO, 탁도, 수온의 변동을 중심으로 -)

  • 이홍근
    • Water for future
    • /
    • v.15 no.4
    • /
    • pp.13-29
    • /
    • 1982
  • 본 논문은 제15권 제3호(1982년 9월)의 제(I)보에 이어 기재되는 제(II)보이다. 제(I)보에서는 1. 서론 2. 분석기법과 수질모형의 이론, 3. 분석자료의 목차 순으로서 연구의 내용과 이론적 근거와 분석에 필요한 자료를 정리하여 제시하였다. 본 연구의 목적은 노량진 및 뚝도 지점의 DO, 탁도, 수온등의 특정수질에 대하여 (1) 수질의 주기성 발견, (2) 수질변동의 특성파악, (3) 시별 DO에 대한 자기 회귀모형의 추론, (4) 일별 DO에 대한 ARIMA 모형의 적용평가에 대한 것이다.

  • PDF

Fluctuations and Time Series Forecasting of Sea Surface Temperature at Yeosu Coast in Korea (여수연안 표면수온의 변동 특성과 시계열적 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun Ho;Jeon, Sang-Back
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Seasonal variations and long term linear trends of SST (Sea Surface Temperature) at Yeosu Coast ($127^{\circ}37.73^{\prime}E$, $34^{\circ}37.60^{\prime}N$) in Korea were studied performing the harmonic analysis and the regression analysis of the monthly mean SST data of 46 years (1965-2010) collected by the Fisheries Research and Development Institute in Korea. The mean SST and the amplitude of annual SST variation show $15.6^{\circ}C$ and $9.0^{\circ}C$ respectively. The phase of annual SST variation is $236^{\circ}$. The maximum SST at Yeosu Coast occurs around August 26. Climatic changes in annual mean SST have had significant increasing tendency with increase rate $0.0305^{\circ}C/Year$. The warming trend in recent 30 years (1981-2010) is more pronounced than that in the last 30 years (1966-1995) and the increasing tendency of winter SST dominates that of the annual SST. The time series model that could be used to forecast the SST on a monthly basis was developed applying Box-Jenkins methodology. $ARIMA(1,0,0)(2,1,0)_{12}$ was suggested for forecasting the monthly mean SST at Yeosu Coast in Korea. Mean absolute percentage error to measure the accuracy of forecasted values was 8.3%.

Variation and Structure of the Cold Water Around Ganjeol Point Off the Southeast Coast of Korea (하계 용승현상에 따른 간절곶 주변해역의 냉수역 구조와 변동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.836-845
    • /
    • 2016
  • The variation and structure of the cold water mass around Ganjeol Point during the summer of 2011 were studied using data from CTD observations and temperature monitoring buoys deployed at 20 stations off the southeast coast of Korea. There was a $-12^{\circ}C$ surface temperature difference between the cold water mass and normal water during the monitoring period. Variations in the isothermal lines for surface temperature along the coast showed that the seabed topography at Ganjeol Point played an important part in the distribution of water temperature. Cold water appeared when the wind components running parallel to the coast had positive values. The upwelling -response for temperature fluctuations was very sensitive to changes in wind direction. Vertical turbulent mixing due to the seabed topography at Ganjeol Point can reinforce the upwelling of cold bottom water. From wavelet analysis, coherent periods found to be 2-8 days during frequent upwelling events and phase differences for a decrease in water temperature with a SSW wind were 12-36 hours.

Effects of Water Temperature Inversion on the Stratification Variation in October and December in the South Sea of Korea (한국 남해에서 10월과 12월의 수온역전현상이 성층변동에 미치는 영향)

  • Lee, Chung-Il;Koo, Do-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2009
  • In order to illustrate the effects of water temperature inversion on the stratification variation in the South Sea of Korea, water temperature, salinity, and density measured in October and December 1999 by National Fisheries Research and Development Institute were reviewed. In October and December of 1999, temperature inversion occurred mainly between 25m and 75m, and in particular in depth of water, in December temperature inversion layer also was formed in the surface layer. In case of October and December, the Tsushima Warm Current (TWC), warm and saline water, was one of motors, and in December, influence of surface cold water was added Although northerly wind prevails in October and December, in October, expanding of the South Korean Coastal Waters (SKCW) towards offshore is not clear, but in December when wind speed is relatively greater than that in October and strength of the TWC become weak, the SKCW spreads towards offshore through the upper layer. Stratification variation was higher along the area where temperature inversion occurred.

  • PDF

Temperature Variabilities at Upper Layer in the Korean Marine Waters Related to Climate Regime Shifts in the North Pacific (한국주변해역 상층부의 수온 변동과 북태평양 기후체제와의 관계)

  • Rahman, SM M.;Lee, Chung Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.145-151
    • /
    • 2016
  • Temperature variability at the upper layer related to climate regime shifts in the Korean waters was illustrated using water temperature, climate index. Three major climate regime shifts (CRS) in 1976, 1988 and 1998 in north Pacific region had an significant influence on the major marine ecosystems structure pattern. Three marginal seas around Korean peninsula; East Sea, East China Sea and Yellow Sea also got important impact from this kind of decadal shift. We used 10m sea water temperatures in four regions of Korean waters since 1950 to detect major fluctuation patterns both seasonally and also decadal shift. 1988 CRS was occurred in all of the study areas in most seasons however, 1998 CRS was only detected in the Yellow Sea and in the southern part of the East Sea. 1976 CRS was detected in all of the study area mainly in winter. After 1998 CRS, the water temperature in the southern part of the East Sea, East China Sea and Yellow Sea were going into decreased pattern; however, in the northern part of the East Sea, it was further shifted to increasing pattern which was started from 1988 CRS period.

Characteristics of Reverberation due to Internal Wave in Shallow Water (천해에서의 내부파에 의한 잔향음 특성)

  • 박종민
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.147-150
    • /
    • 1998
  • 천해에서의 음파전달은 심해와 비교하여 복잡하고 경계면의 영향을 많이 받으며 서해에서 하계의 평균 수온자료로 잔향음을 계산한 결과 해저면 잔향음(reverberation)이 가장 우세한 것으로 나타났다. 특히 서해에서는 하계에 내부파에 의한 강한 수온약층의 생성이 관측되었으며, 이런 현상은 음파전달에 많은 영향을 줄 것으로 예측된다. 내부파를 조석에 의한 장주기와 단주기로 구분하여 적용한 결과 고주파 음원을 사용할 경우 장주기 내부파에 의한 수온약층의 수식변동에 따른 잔향음은 최대 13dB까지 차이가 났으며 단주기 내부파의 경우 수온약층의 하강한 경우 수온약층이 상승한 경우보다 근거리에서 전달손실 변화가 작았다.

  • PDF

Temporal and Spatial Characteristics of Chlorophyll α Distributions Related to the Oceanographic Conditions in the Korean Waters (한국근해 해황과 클로로필 α 분포의 시공간적 변동 특성)

  • Oh, Hyun-Ju;Suh, Young-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.36-45
    • /
    • 2006
  • By analyzing the sea surface temperature (SST), chlorophyll ${\alpha}$, zooplankton and Orview/SeaWiFS satellite data in the Korean Waters from 1999 to 2001, we studied the seasonal and annual variation of chlorophyll ${\alpha}$ concentration and zooplankton biomass. Sea surface temperature was fluctuated with the typical seasonal variation in the waters of temperate zone. Chlorophyll ${\alpha}$ concentration and zooplankton biomass were high in spring and autumn. Year to year fluctuations on annual averaged chlorophyll ${\alpha}$ concentrations in Korean Waters in the spring from 1999 to 2001 were decreased continuously. On the other hand, the estimated chlorophyll ${\alpha}$ concentrations derived from SeaWiFS ocean color data were lower than the measured sea surface chlorophyll a in the Korean Waters.

  • PDF

Variation of Water Temperature in Chungmu Port (충무항의 수온 변동)

  • Yeom, Mal-Gu;Kim, Sam-Gon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.79-82
    • /
    • 1984
  • Seasonal and secular variations of water temperature in Chungmu port were investigated with the data obtained from the Technical Reports(1976~1983) of Hydrographic Office. Monthly and annual range of water temperature were 2 to 8$^{\circ}C$ and 18 to 21$^{\circ}C$, respectively. The coefficients of variance of monthly mean water temperature were 0.015(February, 1976) to 0.208(December, 1980) and their values were smaller in the summer season than in the winter season. The result of harmonic analysis for investigating the seasonal variation of water temperature was T(t)=15.66+8.06 cos(10$^{\circ}$t-233.5)+0.92 cos(20$^{\circ}$t-216). The periods of secular variation were about 2 years and 3 years.

  • PDF

The performance evaluation of dam management by using Granger causal analysis (그랜저 인과분석을 통한 댐관리 성과평가)

  • Cho, Sung-Min;Yoo, Myoung-Kwan;Lee, Deokro
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.135-144
    • /
    • 2021
  • This paper attempted to find implications for water resource management and water quality improvement by analyzing the causal relationship among discharge, water temperature and pollution index, which were expected to have a great effect on water quality with the rise of water temperature and precipitation change as the warming effect in recent years. For this purpose, the unit root test, cointegration test, and Granger causal test were carried out for 10 multi-purpose dams in Korean major water systems using time series data on discharge, water temperature, BOD, COD and DO. It was analyzed that the fluctuation of water temperature affected the pollution index more than the fluctuation of discharge volume. Also, Hapcheon dam and Chungju dam were the best water quality management dams based on the high causal relationship between water quality and discharge. The second rank was Daecheong dam. The third-ranking group were Yongdam and Andong dam, whose causal relationships between water quality and discharge were low. The last group were the remaining five dams.