• Title/Summary/Keyword: 수신 모니터링

Search Result 284, Processing Time 0.023 seconds

A Design and Implementation of Chick Incubation System Based on IoT

  • Sejong Lee;Sol Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.179-186
    • /
    • 2024
  • In this paper, we design and implement an Internet of Things (IoT)-based chick incubation system. The system consists of three key components: the IoT incubator, the IoT server system, and the smartphone application. The IoT incubator is composed of an Arduino board, temperature and humidity sensors, a temperature and humidity controller, a ventilation controller, and an egg turning controller. The temperature and humidity sensors measure the temperature and humidity inside the IoT incubator and send the data to the temperature and humidity controller on the Arduino board. Additionally, it provides the function of transmitting temperature, humidity, and control history data to the IoT server via WiFi. It also offers automatic control of ventilation, egg turning, and temperature and humidity on a daily basis. The IoT server system receives data from the incubator, stores it in a database, and provides query data upon request from the smartphone. The smartphone application retrieves historical data through the server and monitors the temperature and humidity data of the IoT incubator in real-time, controlling the IoT incubator to ensure that the set temperature and humidity ranges are maintained. If the temperature and humidity data deviate from the set ranges, it sends alarms and emergency messages to the user. The IoT-based chick incubation system developed in this paper is a low-cost model due to its reduced manufacturing cost, making it highly beneficial for self-sustaining poultry farms.

A Study on Clinical Variables Contributing to Differentiation of Delirium and Non-Delirium Patients in the ICU (중환자실 섬망 환자와 비섬망 환자 구분에 기여하는 임상 지표에 관한 연구)

  • Ko, Chanyoung;Kim, Jae-Jin;Cho, Dongrae;Oh, Jooyoung;Park, Jin Young
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.27 no.2
    • /
    • pp.101-110
    • /
    • 2019
  • Objectives : It is not clear which clinical variables are most closely associated with delirium in the Intensive Care Unit (ICU). By comparing clinical data of ICU delirium and non-delirium patients, we sought to identify variables that most effectively differentiate delirium from non-delirium. Methods : Medical records of 6,386 ICU patients were reviewed. Random Subset Feature Selection and Principal Component Analysis were utilized to select a set of clinical variables with the highest discriminatory capacity. Statistical analyses were employed to determine the separation capacity of two models-one using just the selected few clinical variables and the other using all clinical variables associated with delirium. Results : There was a significant difference between delirium and non-delirium individuals across 32 clinical variables. Richmond Agitation Sedation Scale (RASS), urinary catheterization, vascular catheterization, Hamilton Anxiety Rating Scale (HAM-A), Blood urea nitrogen, and Acute Physiology and Chronic Health Examination II most effectively differentiated delirium from non-delirium. Multivariable logistic regression analysis showed that, with the exception of vascular catheterization, these clinical variables were independent risk factors associated with delirium. Separation capacity of the logistic regression model using just 6 clinical variables was measured with Receiver Operating Characteristic curve, with Area Under the Curve (AUC) of 0.818. Same analyses were performed using all 32 clinical variables;the AUC was 0.881, denoting a very high separation capacity. Conclusions : The six aforementioned variables most effectively separate delirium from non-delirium. This highlights the importance of close monitoring of patients who received invasive medical procedures and were rated with very low RASS and HAM-A scores.

Implementation of An Automatic Authentication System Based on Patient's Situations and Its Performance Evaluation (환자상황 기반의 자동인증시스템 구축 및 성능평가)

  • Ham, Gyu-Sung;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.25-34
    • /
    • 2020
  • In the current medical information system, a system environment is constructed in which Biometric data generated by using IoT or medical equipment connected to a patient can be stored in a medical information server and monitored at the same time. Also, the patient's biometric data, medical information, and personal information after simple authentication using only the ID / PW via the mobile terminal of the medical staff are easily accessible. However, the method of accessing these medical information needs to be improved in the dimension of protecting patient's personal information, and provides a quick authentication system for first aid. In this paper, we implemented an automatic authentication system based on the patient's situation and evaluated its performance. Patient's situation was graded into normal and emergency situation, and the situation of the patient was determined in real time using incoming patient biometric data from the ward. If the patient's situation is an emergency, an emergency message including an emergency code is send to the mobile terminal of the medical staff, and they attempted automatic authentication to access the upper medical information of the patient. Automatic authentication is a combination of user authentication(ID/PW, emergency code) and mobile terminal authentication(medical staff's role, working hours, work location). After user authentication, mobile terminal authentication is proceeded automatically without additional intervention by medical staff. After completing all authentications, medical staffs get authorization according to the role of medical staffs and patient's situations, and can access to the patient's graded medical information and personal information through the mobile terminal. We protected the patient's medical information through limited medical information access by the medical staff according to the patient's situation, and provided an automatic authentication without additional intervention in an emergency situation. We performed performance evaluation to verify the performance of the implemented automatic authentication system.

A Comparative Analysis between Photogrammetric and Auto Tracking Total Station Techniques for Determining UAV Positions (무인항공기의 위치 결정을 위한 사진 측량 기법과 오토 트래킹 토탈스테이션 기법의 비교 분석)

  • Kim, Won Jin;Kim, Chang Jae;Cho, Yeon Ju;Kim, Ji Sun;Kim, Hee Jeong;Lee, Dong Hoon;Lee, On Yu;Meng, Ju Pil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.553-562
    • /
    • 2017
  • GPS (Global Positioning System) receiver among various sensors mounted on UAV (Unmanned Aerial Vehicle) helps to perform various functions such as hovering flight and waypoint flight based on GPS signals. GPS receiver can be used in an environment where GPS signals are smoothly received. However, recently, the use of UAV has been diversifying into various fields such as facility monitoring, delivery service and leisure as UAV's application field has been expended. For this reason, GPS signals may be interrupted by UAV's flight in a shadow area where the GPS signal is limited. Multipath can also include various noises in the signal, while flying in dense areas such as high-rise buildings. In this study, we used analytical photogrammetry and auto tracking total station technique for 3D positioning of UAV. The analytical photogrammetry is based on the bundle adjustment using the collinearity equations, which is the geometric principle of the center projection. The auto tracking total station technique is based on the principle of tracking the 360 degree prism target in units of seconds or less. In both techniques, the target used for positioning the UAV is mounted on top of the UAV and there is a geometric separation in the x, y and z directions between the targets. Data were acquired at different speeds of 0.86m/s, 1.5m/s and 2.4m/s to verify the flight speed of the UAV. Accuracy was evaluated by geometric separation of the target. As a result, there was an error from 1mm to 12.9cm in the x and y directions of the UAV flight. In the z direction with relatively small movement, approximately 7cm error occurred regardless of the flight speed.