• 제목/요약/키워드: 수송온도

검색결과 284건 처리시간 0.033초

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • 제27권1호
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

A Study on Future Changes of Sea Surface Temperature and Ocean Currents in Northwest Pacific through CMIP6 Model Analysis (CMIP6 모형 결과 분석을 통한 북서태평양 해면수온과 해류의 미래변화에 대한 고찰)

  • JEONG, SUYEON;CHOI, SO HYEON;KIM, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제26권4호
    • /
    • pp.291-306
    • /
    • 2021
  • From the climate change scenario experiments of 21 models participating in Coupled Climate Model Inter-comparison Project Phase 6, future changes of sea surface temperature (SST) and Kuroshio in the Northwest Pacific were analyzed. The spatial feature of SST change was found to be related to the change of the current speed and spatial distribution of Kuroshio. To investigate the relationship between the change in latitude of the Kuroshio extension region, which flows along the boundary between the subtropical gyre and the subarctic gyre in the North Pacific, and the large-scale atmospheric circulation due to global warming, the zero-windstress curl line for each climate change experiment from 9 out of 21 models were compared. As the atmospheric radiative forcing increases due to the increase of greenhouse gases, it was confirmed that the zero-windstress curl line moves northward, which is consistent with the observation. These results indicate that as the Hadley Circulation expands to the north due to global warming, the warming of the mid-latitudes to which the Korean Peninsula belongs may be accelerated. The volume transport and temperature of the Tsushima Warm Current flowing into the East Sea through the Korea Strait also increased as the atmospheric radiative forcing increased.

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • 제32권5호
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

Qualitative Changes in Maturity, Precooling Temperatures and Light Illumination on the Post-harvest Management of the Fruits in 'Maehyang' Strawberry for Export (수출딸기 '매향'의 수확후 숙도, 예냉온도 및 광조사에 따른 품질변화)

  • Kim, Hye Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • 제22권4호
    • /
    • pp.432-438
    • /
    • 2013
  • A study was conducted to examine the effect of maturity and precooling ($60%/0^{\circ}C$ and $80%/4^{\circ}C$), and light illumination on the storage life of 'Maehyang' strawberry meant for export. Fruits at 60% and 80% ripened stage were harvested from a commercial greenhouse in Jinju on April 3, 2012. Harvested fruits were transported to the precooling system within 30 minutes. Transported fruits were precooled the $4^{\circ}C$ for 2 hours and $0^{\circ}C$ for 5 hours by a forced draft cooling system, and then stored at $6^{\circ}C$. During the storage, the fruits were examined for their changes in hardness, soluble solid content, quality grade, acidity, Hunter value, weight loss, and the incidence of gray mold (Botrytis cinerea) at an interval of two days from April 5 to April 17. Hardness was decreased until 7th days and it was changed to increase at 9th days. Treatment of 60% maturity, $0^{\circ}C$ precooling and no light illumination of strawberry were shown the highest value in freshness. The soluble solid content harvested in 80% maturity strawberry was higher than 60% maturity strawberry until the third day. Quality grade decreased rapidly in 80% maturity stage with light illumination strawberry in comparison to the 60% maturity stage of strawberry. Hunter value 'L' and 'a' showed a rapid change in 60% maturity stage of strawberry. Weight loss decreased rapidly in 80% maturity, $0^{\circ}C$ precooling, and no light illumination of strawberry treatments. Gray mold incidence was found the most at 60% maturity, $4^{\circ}C$ precooling, and light illumination of strawberry. The results from our study indicate that effectiveness for keeping the freshness of strawberry was best achieved by harvesting in low maturity, precooling at $0^{\circ}C$, and with no light illumination.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: I. Comparative Analysis of Thermodynamic Equations of State using Numerical Calculation (이산화탄소 해양지중저장 처리를 위한 공정 설계: I. 수치계산을 통한 열역학 상태방정식의 비교 분석)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제11권4호
    • /
    • pp.181-190
    • /
    • 2008
  • To response climate change and Kyoto protocol and to reduce greenhouse gas emissions, marine geological storage of $CO_2$ is regarded as one of the most promising option. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources(eg. power plant), to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. Ideal and SRK equation of state did not predict the density behavior above $29.85^{\circ}C$, 60 bar. Especially, they showed maximum 100% error in supercritical state. BWRS equation of state did not predict the density behavior between $60{\sim}80\;bar$ and near critical temperature. On the other hand, PR and PRBM equation of state showed good predictive capability in supercritical state. Since the thermodynamic conditions of $CO_2$ reservoir sites correspond to supercritical state(above $31.1^{\circ}C$ and 73.9 bar), we conclude that it is recommended to use PR and PRBM equation of state in designing of $CO_2$ marine geological storage process.

  • PDF

An Evaluation of Food Safety Sanitation Management Practices of Food Manufacturing Companies that Supply Foods to School Foodservice (학교급식 식재료 제조.가공업체의 위생관리 실태 조사)

  • Kim, Yun-Hwa;Lee, Yeon-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제39권10호
    • /
    • pp.1535-1544
    • /
    • 2010
  • This study was conducted to evaluate the sanitation management practices in food manufacturing companies that supply food and food ingredients to school foodservice operations. Subjects consisted of 34 food manufacturing factories located in the Daegu and Gyeongbuk areas. Sanitation performance was self-evaluated using a Likert 5-point scale. The total mean score for factory sanitation performance was 4.72. Scores for perceived sanitation management performance in the factories were as follows: management of material (4.90); personal hygiene (4.78); management of work (4.71); management of workplace and vicinity (4.68); and food and raw material transportation (4.67). Participating companies that had HACCP certification programs scored high on the following sanitation inspection items: washing and sanitation guides, adequate equipment for correct hand washing, and sanitation of raw material delivery vans. The mean frequency for employee sanitation education was 2.8 times per month. Factory managers believed that their sanitation management programs kept their food safe and that the food was produced and delivered with a high degree of safety. However, they thought that food sanitation standardization was needed in order to supply high-quality and safe food items. In terms of traceability, 58.8% of the raw materials were traceable and 61.8% of the manufactured products were traceable. Sanitation management performance scores for the participating food manufacturing companies were high, although the soybean sprouts processing companies had comparatively low scores. Management reinforcement of employee sanitation education and a sense of duty and pride among factory employees will promote adequate and appropriate sanitation management performance for food safety and quality in factories that supply food and ingredients to school foodservice operations.

Study on the Methodology of the Microbial Risk Assessment in Food (식품중 미생물 위해성평가 방법론 연구)

  • 이효민;최시내;윤은경;한지연;김창민;김길생
    • Journal of Food Hygiene and Safety
    • /
    • 제14권4호
    • /
    • pp.319-326
    • /
    • 1999
  • Recently, it is continuously rising to concern about the health risk being induced by microorganisms in food such as Escherichia coli O157:H7 and Listeria monocytogenes. Various organizations and regulatory agencies including U.S.FPA, U.S.DA and FAO/WHO are preparing the methodology building to apply microbial quantitative risk assessment to risk-based food safety program. Microbial risks are primarily the result of single exposure and its health impacts are immediate and serious. Therefore, the methodology of risk assessment differs from that of chemical risk assessment. Microbial quantitative risk assessment consists of tow steps; hazard identification, exposure assessment, dose-response assessment and risk characterization. Hazard identification is accomplished by observing and defining the types of adverse health effects in humans associated with exposure to foodborne agents. Epidemiological evidence which links the various disease with the particular exposure route is an important component of this identification. Exposure assessment includes the quantification of microbial exposure regarding the dynamics of microbial growth in food processing, transport, packaging and specific time-temperature conditions at various points from animal production to consumption. Dose-response assessment is the process characterizing dose-response correlation between microbial exposure and disease incidence. Unlike chemical carcinogens, the dose-response assessment for microbial pathogens has not focused on animal models for extrapolation to humans. Risk characterization links the exposure assessment and dose-response assessment and involve uncertainty analysis. The methodology of microbial dose-response assessment is classified as nonthreshold and thresh-old approach. The nonthreshold model have assumption that one organism is capable of producing an infection if it arrives at an appropriate site and organism have independence. Recently, the Exponential, Beta-poission, Gompertz, and Gamma-weibull models are using as nonthreshold model. The Log-normal and Log-logistic models are using as threshold model. The threshold has the assumption that a toxicant is produce by interaction of organisms. In this study, it was reviewed detailed process including risk value using model parameter and microbial exposure dose. Also this study suggested model application methodology in field of exposure assessment using assumed food microbial data(NaCl, water activity, temperature, pH, etc.) and the commercially used Food MicroModel. We recognized that human volunteer data to the healthy man are preferred rather than epidemiological data fur obtaining exact dose-response data. But, the foreign agencies are studying the characterization of correlation between human and animal. For the comparison of differences to the population sensitivity: it must be executed domestic study such as the establishment of dose-response data to the Korean volunteer by each microbial and microbial exposure assessment in food.

  • PDF

Kinetics of esterification of food waste oil by solid acid catalyst and reaction optimization (고체 산 촉매를 이용한 고산가 음폐유의 에스테르화 반응 동역학 연구 및 반응 최적화)

  • Lee, Hwa-Sung;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • 제34권3호
    • /
    • pp.683-693
    • /
    • 2017
  • Transport biofuels have been recognized as a promising means to resolve the following issues like global warming, oil depletion and environmental pollutions. Among various biofuels, biodiesel has several advantages such as less emission of air pollutants and higher cetane values compared to diesel oil. Demand for biodiesel in Korea is increasing that leads to higher dependence on the imported feedstocks. Therefore, it is important to utilize the waste materials collected domestically for biodiesel production. Food waste oil collected in waste treatment facility has not been used for biodiesel production due to high free fatty contents in the oil. In this work, biodiesel conversion of food waste oil by Amberlyst 15 was studied. Synthetic and actual food waste oils have been used in the study. First, the effects of the major operating parameters including reaction temperature, methanol to oil molar ratio and catalyst loading on the conversion rates and yields were determined with synthetic waste oil. Kinetic modelling work was also done to determine the activation energy of the reaction. From the work, optimization reaction conditions were determined to be 383K, 1: 26.1 for methanol molar ratio to oil, 10 wt.% for catalyst loading and 360 min for reaction time. Activation energy of the reaction is determined to be 29.75 kJ/mol, lower than those reported in the previous works. So the solid catalyst, Amberlyst 15, was more efficient for esterification than the solid catalysts employed in the other works. Agitation rates have the negligible effects on the conversion rates and yields. With the identified optimization conditions, conversion of the actual food waste oil was also carried out. The esterification yield of actual food waste oil in 60 min was 13% lower than that of synthetic waste oil but the final yields in 240 min were similar each other, 98.12% for synthetic oil and 97.62% for actual waste oil.

Investigation of Plugging and Wastage of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction (소듐과 이산화탄소 반응에 의한 소듐유로막힘 및 재료손상 현상 연구)

  • Park, Sun Hee;Min, Jae Hong;Lee, Tae-Ho;Wi, Myung-Hwan
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.863-870
    • /
    • 2016
  • We investigated the physical/chemical phenomena that a slow loss of $CO_2$ inventory into sodium after the sodium-$CO_2$ boundary failure in printed circuit heat exchangers (PCHEs), which is considered for the supercritical $CO_2$ Brayton cycle power conversion system of a sodium-cooled fast reactor (SFR). The first phenomenon is plugging inside narrow sodium channels by micro cracks and the other one is damage propagation referred to as wastage combined with the corrosion/erosion effect. Experimental results of plugging shows that sodium flow immediately stopped as $CO_2$ was injected through the nozzle at $300{\sim}400^{\circ}C$ in 3 mmID sodium channels, whereas sodium flow stopped about 60 min after $CO_2$ injection in 5 mmID sodium channels. These results imply that if pressure boundary of sodium-$CO_2$ fails a narrow sodium channel would be plugged by reaction products in a short time whereas a relatively wider sodium channel would be plugged with higher concentration of reaction products. Wastage by the erosion effect of $CO_2$ (200~250 bar) hardly occurred regardless of the kinds of materials (stainless steel 316, Inconel 600, and 9Cr-1Mo steel), temperature ($400{\sim}500^{\circ}C$), or the diameter of the $CO_2$ nozzle (0.2~0.8 mm). Velocities at the $CO_2$ nozzle were specified as Mach 0.4~0.7. Our experimental results are expected to be used for determining the design parameters of PCHEs for their safeties.

Studies on the Processing and Management Forms of Filatures (우리나라 제사공장의 공정 관리실태에 관한 조사연구)

  • 송기언;이인전
    • Journal of Sericultural and Entomological Science
    • /
    • 12호
    • /
    • pp.37-45
    • /
    • 1970
  • The processing management forms of our country's filature factories in 1969 are summarized as follows. (1) About 80% of total cocoon collection is made within 5 days involving peak day, and 10% of cocoon collection is finished until 3 days before and after the peak day, (2) About 92% of alive cocoons transported on unpaved road, and about 40% of the cocoons purchased by all factories are loaded on trucks from common selling station which is far beyond 40km, therefore a new packing system of alive cocoons to drop the damage of cocoon qualities, should be taken. (3) 22% of all factories in our. country have only low-temperature cocoon drying machine. Therefore the installment of hot-air cocoon drying machine is required urgently. (4) In view of cocoon qualities in our country, the grouping method of cocoon for reeling. taken by about 50% of the factories at percent, which classify cocoons for reeling as high group (1,2,3,4 grades) and low group(5,6 grades), will have to be replaced by the method tat classify them high group (1,2 grades) middle group (3,4 grades), low group (5,6 grades). (5) The .ratio of cocoon assorting stood about 10% in multi-ends reeling, about 15% in automatic reeling, conclusively, the ratio of cocoon assorting for automatic reeling was higher tan that for multi-ends reeling. One person's ability for a day in cocoon assorting reaches to about 80-100kg. (6) Cocoon cooking condition requires the increase of the cooking time, the pressure and temperature used to be prolonged as much as the qualities of cocoons are material cocoon ior automatic and double cocoon machines are treated uncompletely. (7) Automatic silk reeling is being performed at 1-2$^{\circ}C$ lower in reeling water temperature and operated at about twice velocity. (8) The temperature and humidity of rereeling room stood at 25$^{\circ}C$, 67.2% R.H and 32.3$^{\circ}C$, 51.9% R.H of rereeling machine are showed, Average rereeling velocity is 233m/min and large reefs charged for one person are 7.5 reels and form of skein used in all factories is double skein. (9) About 73% of water sources for filature used under-earth water. About 48% of all filature factories in our country have not yet water purifying equipments. Installation of the equipment for these factories seems to be urgent, (10) Denier .balance, sizing reel, seriplane, are being used in most factories as self-inspection apparatus. (11) More than 90% of the factories use the vacum tank in rereeling process and about 20% of them use it in cocoon cooing process (12) Only 21% of the factories use chemicals in filature process. About all them use "Seracol 100" in cocoon cooking process and "Seracol 500" in rereeling process, (13) Above survey results explain each all factories show large difference in the processing management. Therefore, it is believed that intercommunication through seminar or technical exchange will contribute to the production evaluation of cocoon in our filature industry.

  • PDF