• Title/Summary/Keyword: 수소 환원

Search Result 605, Processing Time 0.033 seconds

Cytosolic Phospholipase A2 Activity in Neutrophilic Oxidative Stress of Platelet-activating Factor-induced Acute Lung Injury (Platelet-activating Factor에 의한 급성폐손상에서 호중구성 산화성 스트레스에 관여하는 Cytosolic Phospholipase A2 활성도의 변화)

  • Kwon, Young Shik;Hyun, Dae Sung;Lee, Young Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.6
    • /
    • pp.497-506
    • /
    • 2007
  • Background: The present investigation was performed in rats and isolated human neutrophils in order to confirm the presumptive role of the positive feedback loop of cytosolic phospholipase $A_2$ ($cPLA_2$) activation by plateletactivating factor (PAF). Methods: The possible formation of the positive feedback loop of the $cPLA_2$ activation and neutrophilic respiratory burst was investigated in vivo and in vitro by measurement of the parameters denoting acute lung injury. In addition, morphological examinations and electron microscopic cytochemistry were performed for the detection of free radicals in the lung. Results: Five hours after intratracheal instillation of PAF ($5{\mu}g/rat$), the lung leak index, lung myeloperoxidase (MPO) activity, the number of neutrophils and the concentration of cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid were increased by PAF as compared with those of control rats. The NBT assay and cytochrome-c reduction assay revealed an increased neutrophilic respiratory burst in isolated human neutrophils following exposure to PAF. Lung and neutrophilic $cPLA_2$ activity were increased following PAF exposure and exposure to hydrogen peroxide increased $cPLA_2$ activity in the lung. Histologically, inflammatory findings of the lung were observed after PAF treatment. Remarkably, as determined by $CeCl_3$ cytochemical electron microscopy, increased production of hydrogen peroxide was identified in the lung after PAF treatment. Conclusion: PAF mediates acute oxidative lung injury by the activation of $cPLA_2$, which may provoke the generation of free radicals in neutrophils.

Glycerol Steam Reforming for Hydrogen Production on Metal-ceramic Core-shell CoAl2O4@Al Composite Structures (금속-세라믹 Core-Shell CoAl2O4@Al 구조체를 적용한 불균일계 촉매의 글리세롤 수소전환 반응특성)

  • Kim, Jieun;Lee, Doohwan
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this study, we investigated the structure and properties of a highly heat conductive metal-ceramic core-shell CoAl2O4@Al micro-composite for heterogeneous catalysts support. The CoAl2O4@Al was prepared by hydrothermal surface oxidation of Al metal powder, which resulted in the structure with a high heat conductive Al metal core encapsulated by a high surface area CoAl2O4 shell. For comparison, CoAl2O4 was also prepared by co-precipitation method and also utilized for a catalyst support. Rh catalysts supported on CoAl2O4@Al and CoAl2O4 were prepared by incipient wetness impregnation and characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), CO chemisorption, and temperature-programmed reduction (TPR). The properties of catalysts were investigated for glycerol steam reforming reaction for hydrogen production at 550 ℃. Rh/CoAl2O4@Al exhibited about 2.8 times higher glycerol conversion turnover frequency (TOF) than Rh/CoAl2O4 due to facilitated heat transport through the core-shell structure. The CoAl2O4@Al and CoAl2O4 also showed some catalytic activities due to a partial reduction of Co on the support, and a higher catalytic activity was also found on the CoAl2O4@Al core-shell than CoAl2O4. These catalysts, however, displayed deactivation on the reaction stream due to carbon deposition on the catalysts surface.

Hydrochemistry and noble gas origin of hot spring waters of Icheon and Pocheon area in Korea (이천 및 포천지역 온천수의 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Koh, Yung-Kwon;Shin, Seon-Ho;Nagao, Keisuke;Kim, Kyu-Han;Kim, Gun-Young
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.529-541
    • /
    • 2009
  • Hydrochemical, stable isotopic ($\delta^{18}O$ and dD) and noble gas isotopic analyses of seven hot spring water samples, eleven groundwater samples and six surface water samples collected from the Icheon and Pocheon area were carried out to find out hydrochemical characteristics, and to interpret the source of noble gases and the geochemical evolution of the hot spring waters. The hot spring waters show low temperature type ranging from 21.5 to $31.4^{\circ}C$ and the pH value between 6.69 and 9.21. Electrical conductivity of hot spring waters has the range from 310 to $735\;{\mu}S/cm$. Whereas the hot spring water in the Icheon area shows the geochemical characteristics of neutral pH, the $Ca-HCO_3$(or $Ca(Na)-HCO_3$) chemical type and a high uranium content, the hot spring water in the Pocheon area shows the characteristics of alkaline pH, the $Na-HCO_3$ chemical type and a high fluorine content. These characteristics indicate that the hot spring water in the Icheon area is under the early stage in the geochemical evolution, and that the hot spring water in the Pocheon area has been geochemically evolved. The $\delta^{18}O$ and ${\delta}D$ values of hot spring waters show the range of $-10.1{\sim}-8.69%o$ and from $-72.2{\sim}-60.8%o$, respectively, and these values supply the information of the recharge area of hot spring waters. The $^3He/^4He$ ratios of the hot spring waters range from $0.09\;{\times}\;10^{-6}$ to $0.65\;{\times}\;10^{-6}$ which are plotted above the mixing line between air and crustal components. Whereas the helium gas in the Icheon hot spring water was mainly provided from the atmospheric source mixing with the mantle(or magma) origin, the origin of helium gas in the Pocheon hot spring water shows a dominant crustal source. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

Advanced Treatment of Sewage and Wastewater Using an Integrated Membrane Separation by Porous Electrode-typed Electrolysis (분리막/다공 전극형 전기분해 조합공정을 이용한 하.폐수의 고도처리)

  • Choi, Yong-Jin;Lee, Kwang-Hyun
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • To treat nitrate and non-biodegradable organics effectively in sewage, industrial wastewater and livestock wastewater, the activated sludge process integrated by a membrane separation and a porous electrode- electrolysis was proposed and its efficiency was investigated. The proposed system was consisted of 3 processes; activated sludge, membrane filtration and electrolysis. In the study, the membrane filtration played a role in reducing the load of the electrolysis to operate the proposed process stably. The electrolysis consisted of a porous electrode to increase the efficiency due to the extension of the specific surface area. Additionally, redox reaction in the electrolysis was induced by decomposing influent water as current was applied. As a result, hydrogen free radicals and oxygen radicals as intermediates were produced and they acted as oxidants to play a role in decomposing non-degradable organics. It was environmentally-friendly process because intermediates produced by porous electrode were used to treat waste matters without supplying external reagent. Experimental data showed that the proposed process was more excellent than activated sludge process. SS removal efficiencies of the proposed process, membrane filtration and activated sludge process were about 100%, about 100% and about 90%, respectively. COD removal efficiencies of the proposed system, membrane filtration and activated sludge process were about 92%, about 84% and about 78%, respectively. T-N removal efficiencies of the proposed system, membrane filtration and activated sludge process were about 88%, about 67%, and about 58%, respectively. The SS data showed that SS was efficiently removed in the single of the membrane filtration. The COD/T-N data showed that COD/T-N of membrane hybrid process was treated by removing a little soluble organics and SS, and that COD/T-N of electrolysis hybrid process was treated by oxidize organics with high removal rate.

Antioxidant Activities and Cytoprotective Effects of Lonicera japonica Thunb. Extract and Fraction against Oxidative Stress (인동덩굴 추출물과 분획물의 항산화 활성 및 산화적 스트레스에 대한 세포 보호 효과)

  • Lee, Ye Seul;Yun, Mid Eum;Lee, Yun Ju;Park, Young Min;Lee, Sang Lae;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2018
  • In this study, the antioxidant activities and cytoprotective effects against oxidative stress of Lonicera japonica Thunb. 50% ethanol extract and ethyl acetate fraction were investigated. Using the 1,1-diphenyl-2-picrylhydrazyl assay, the free radical scavenging activity (FSC50) of L. japonica Thunb. 50% ethanol extract and ethyl acetate fraction was determined as 152.00 and $77.25{\mu}g/ml$, respectively. To measure the reactive oxygen species (ROS) scavenging activity, the total antioxidant capacity (OSC50) was determined by using a luminol-dependent chemiluminescence assay. The antioxidant activity of the ethyl acetate fraction ($0.33{\mu}g/ml$) was approximately four times stronger than that of the 50% ethanol extract ($1.12{\mu}g/ml$). The protective effect against $^1O_2$-induced cellular damage of human erythrocytes (${\tau}_{50}$) was 46.0 min at $10{\mu}g/ml$ of the 50% ethanol extract and 52.3 min at $1{\mu}g/ml$ of the ethyl acetate fraction. We also investigated the cytoprotective effects against oxidative stress induced by $H_2O_2$ and the intracellular ROS scavenging activity in response to UVB irradiation and found that the extract and fraction protected human skin cells from damage and reduced ROS. These results confirmed that L. japonica Thunb. was a valuable plant-derived natural antioxidant with potential for development as an antioxidative functional ingredient.

Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site (물 암석 반응을 고려한 KURT 지하수의 지구화학적 특성)

  • Ryu, Ji-Hun;Kwon, Jang-Soon;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2012
  • Geochemical composition of fracture filling minerals and groundwater was investigated to characterize geochemical characteristics of groundwater system at the KURT site. Minerals such as calcite, illite, laumontite, chlorite, epidote, montmorillonite, and kaolinite, as well as I/S mixed layer minerals were detected in the minerals extracted from the fracture surfaces of the core samples. The groundwater from the DB-1, YS-1 and YS-4 boreholes showed alkaline conditions with pH of higher than 8. The electrical conductivity (EC) values of the groundwater samples were around $200{\mu}S/cm$, except for the YS-1 borehole. Dissolved oxygen was almost zero in the DB-1 borehole indicating highly reduced conditions. The Cl- concentration was estimated around 5 mg/L and showed homogeneous distribution along depths at the KURT site. It might indicate the mixing between shallow groundwater and deep groundwater. The shallow groundwater from boreholes showed $Ca-HCO_3$ type, whereas deep groundwater below 300 m from the surface indicated $Na-HCO_3$ type. The isotopic values observed in the groundwater ranged from -10.4 to -8.2‰ for ${\delta}^{18}O$ and from -71.3 to -55.0‰for ${\delta}D$. In addition, the isotope-depleted water contained higher fluoride concentration. The oxygen and hydrogen isotopic values of deep groundwater were more depleted compared to the shallow groundwater. The results from age dating analysis using $^{14}C$ indicated relatively younger (2000~6000yr old) groundwater compared to other european granitic groundwaters such as Stripa (Sweden).

Thermal Water Level Change and Geochemistry in the Suanbo Area, Korea (수안보지역의 온천수위 변동과 수리지구화학에 관한 연구)

  • Yum, Byoung-Woo;Kim, Yongje
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.59-65
    • /
    • 1999
  • Both the groundwater changes due to different pumping rates and the geochemistry of thermal waters in the Suanbo area are considered in this study. The observation of groundwater level change since 1991 shows that the change is directly correlated with pumping rates of thermal waters and reveals the retardation of ca. 5 weeks after pumping. The hydrogeological aquifer in the area is under reducing condition. The thermal waters are of Na-HCO$_3$ type. and are alkaline (pH=8.5∼8.7) with low TDS values (274∼284 mg/l) and high concentrations of Na (68∼72 mg/l). F (6.4∼8.9 mg/l), and HCO$_3$(136∼146 mg/l). Oxygen and hydrogen isotope ratios of thermal water indicate a meteoric water origin. The activities of Rn-222 and Ra-226 in both thermal water and local groundwater were determined to delineate possible geochemical controls on the Rn-222 and Ra-226. The Rn-222 concentrations are several orders of magnitude greater than the Ra-226 concentrations. The concentrations of Rn-222 range from 190 to 7.490 pCi/1 with an average of 2,522 pCil/l. and those of Ra-226 average 0.32 pCi/1 with the range from 0.25 to 0.42 pCi/1. The concentrations of Rn-222 and Ra-226 are inversely correlated with EC and alkalinity. The pH it positively correlated with Ra-226. The correlation between Rn-222 and Ra-226 is poor. Thermal waters in the study area are produced from highly fractured phyllite. The thermal water qualify. CSAMT (controled-source audiofrequency magnetotelluric) prospecting, and petrological evidences, however, indicate that the heat is possibly transmitted through deep normal faults reaching a deep granite batholith, and the phyllite acts only as a groundwater pathway.

  • PDF

Characteristics of Pd Catalysts for Methane Oxidation (메탄 산화를 위한 Pd 촉매의 특성)

  • Lee, Jin-Man;Yang, O-Bong;Kim, Chun-Yeong;Woo, Seong-Ihl
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.557-562
    • /
    • 1999
  • The reaction properties of Pd. Pd-Ce and Pd-La catalysts supported on ${\gamma}-Al_2O_3$ were investigated in the oxidation reaction of methane($CH_4$) exhausted from the compressed natural gas vehicle in a U-tube flow reactor with gas hourly space velocity of $72,000h^{-1}$. The catalysts were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), BET surface area and hydrogen chemisorption. Pd catalyst prepared by $Pd(NO_3)_2$ as a palladium precursor and calcined at $600^{\circ}C$ showed the highest activity for a methane oxidation. Catalytic activity of calcined $Pd/{\gamma}-Al_2O_3$ in which most of palladium was converted into palladium oxide species was higher than that of reduced $Pd/{\gamma}-Al_2O_3$ in which most of palladium existed in palladium metal by XRD. As increasing the number of reaction cycles in the wide range of redox, the catalytic activity of $Pd/{\gamma}-Al_2O_3$ was decreased and the highly active window became narrower. Lanthanum oxide promoted Pd catalyst, $Pd/La/{\gamma}-Al_2O_3$ showed enhanced thermal stability compared with $Pd/{\gamma}-Al_2O_3$ even after aging at $1000^{\circ}C$, which was ascribed to the role of La as a promoter to suppress the sintering of palladium metal and ${\gamma}-Al_2O_3$ support. Almost all of methane was removed by the reaction with NO at the redox ratio of 1.2 in case of oxygen excluded steam, but that activity was significantly decreased in the steam containing oxygen.

  • PDF

A Study of material analysis and its experimentation of metamorphosis and its utilities in Copper Alloy plates for contemporary metal craft (현대금속공예용 동합금판의 재료분석과 형질변환 실험 및 응용에 관한 연구)

  • Lim, Ock-Soo
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.241-250
    • /
    • 2004
  • In this research, the copper alloy plates C2200, C5210, C7701, C8113 were selected to make datum and to identify further usage of metal craft experimentation. For its experimentation, the general welding and TIG welding methods were researched; for 2nd experimentation, the Reticulation and Electroforming skill's differences in color and temperature were researched. With these methods 3 different kinds of works are introduced for sample studies. For this research, Dr. Lee, Dong-Woo who works in Poongsan Metal Co, supported 4 kinds of copper alloy metals. Which are Commercial bronze (Cu-Zn), Deoxidiged Copper(Cu-Sn-P), Nickel Silver (Cu-Ni-Zn), and White Bronze (Cu-Ni); they were applied partly and wholly by the method of Laminatin, Reticulation, Fusing, and Electroforming skills. In case of C2200, the brass, the A. C. TIG welding method is better under 2mm slight plate; the D.C. TIG welding is better upper 2mm plate; and 250~300$^{\circ}C$ is recommended for remain heat treatment. In case of C5210, not having Hydrogen in high temperature return period, doesn't need Oxygen in high temperature and hardening in comparative high temperature neither, it is good for welding. It contains Sn 2-9% ad P 0.03-0.4% generally; and in accordance with the growth rate of Sn contain amount, the harden temperature boundary become broad. In case of cold moment after welding, they are recommended that higher speed TIG welding, smaller melting site and less than 200$^{\circ}C$ for pre-heating temperature. In case of C7701, the 10-20% Ni, 15-30% Zn are widely used.. If it is upper 30% Zn, it become (${\alpha}+{\beta}$) system and adhesive power rate become lower, and the productivity become lower in low temperature but the productivity become higher in high temperature. Nickel Silver's resistance of electricity is well; and the heatproof and incorrodibility is good, too. Lastly, in case of C8113, good at persistence in salty and grind; high in strength of high temperature. In case of white brass, contain 10-30% Nickel and hardened in high temperature and become single phrase. For these reason, the crystallization particles easily become large, if the resistance become higher small amount of Pb, P, S separation rate become higher.

  • PDF

Mineralization of Cattle Manure Compost at Various Soil Moisture Content (우분퇴비 시용후 토양수분 조절에 따른 질소 및 탄소의 전환)

  • Kim, P.J.;Chung, D.Y.;Chang, K.W.;Lee, B.L.
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.295-303
    • /
    • 1997
  • To investigate the transformation characteristics of nitrogen and carbon from cow manure compost amended in soil under different moisture conditions, dynamics of nitrogen and carbon were determined periodically for 15 weeks of aerobic incubation at room temperature during July${\sim}$November, 1996. Cow manure compost matured with mixing saw dust was amended with the 4 ratios (0, 2, 4, 6%(wt/wt)) in Ap horizon soil, which collected from green house in Yesan, Chungnam. Moisture was controlled with 0.2, 0.3, 0.4, and 0.5 of mass water conte nt (${\theta}$m) to air dried soil, and water loss was compensated at every sampling. During incubation, soil pH was decreased continuously, that was caused by hydrogen generated from nitrification of ammonium nitrogen. And pH became higher with inclining cow manure compost amendment and water treatment, that meaned the increase of mineralization of organic-N to $NH_4\;^+-N$. Total nitrogen was reduced with increasing water content, but total carbon showed the contrast tendency with that of nitrogen. Therefore, C/N ratio slightly decreased in the low water condition (${\theta}$m 0.2) during incubation, but increased continuously in high water condition over ${\theta}$m 0.4. As a result, it was assumed that soil fertility is able to be reduced in the high water content over available water content. Nitrate transformation rate increased lasting in the low water content less than ${\theta}$m 0.3. Itdropped significantly in the first $2{\sim}3$ weeks of incubation over ${\theta}$m 0.4. In particular, nitrate was not detected in ${\theta}$m 0.5 of water content after the first $2{\sim}3$ weeks. In contrast, ammonium transformation was inclined with increasing water treatment. Nitrogen mineralization rate, which calculated with percentage ratio of (the sum of ex.$NH_4\;^+-N$ and $NO_3\;^--N$)/total nitrogen, was continuously increased in the low water content of ${\theta}$m 0.2 and 0.3. But it saw the different patterns in high water content over ${\theta}$m 0.4 that was drastically declined in the initial stage and then gradually inclined . From the above results, nitrogen transformation patterns differentiated decisively in water content between ${\theta}$m 0.3 and 0.4 in soil. Thus, it is very important for the maintain of suitable soil water content to enhance fertility of soil amended with manure compost. However, excess treatment of manure compost might enhance the possibility of contamination of small watershed and ground water around agricultural area.

  • PDF