• Title/Summary/Keyword: 수소 탱크

Search Result 104, Processing Time 0.026 seconds

Development of FCEV accident scenario and analysis study on dangerous distance in road tunnel (도로터널에서 수소차 사고시나리오 개발 및 위험거리에 대한 분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.659-677
    • /
    • 2022
  • Hydrogen is emerging as a next-generation energy source and development and supply of FCEV (hydrogen fuel cell electric vehicle) is expected to occur rapidly. Accordingly, measures to respond to hydrogen car accidents are required and researches on the safety of hydrogen cars are being actively conducted. In this study, In this study, we developed a hydrogen car accident scenarios suitable for domestic conditions for the safety evaluation of hydrogen car in road tunnels through analysis of existing experiments and research data and analyzed and presented the hazard distance according to the accident results of the hydrogen car accident scenarios. The accident results according to the hydrogen car accident scenario were classified into minor accidents, general fires, jet flames and explosions. The probability of occurrence of each accident results are predicted to be 93.06%, 1.83%, 2.25%, and 2.31%. In the case of applying the hydrogen tank specifications of FCEV developed in Korea, the hazard distance for explosion pressure (based on 16.5 kPa) is about 17.6 m, about 6 m for jet fire, up to 35 m for fireball in road tunnel with a standard cross section (72 m2).

Damage Evaluation of Adjacent Structures for Detonation of Hydrogen Storage Facilities (수소저장시설의 폭발에 대한 인접 구조물의 손상도 평가)

  • Jinwon Shin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.61-70
    • /
    • 2023
  • This study presents an analytical study of investigating the effect of shock waves generated by the hydrogen detonation and damage to structures for the safety evaluation of hydrogen storage facilities against detonation. Blast scenarios were established considering the volume of the hydrogen storage facility of 10 L to 50,000 L, states of charge (SOC) of 50% and 100%, and initial pressures of 50 MPa and 100 MPa. The equivalent TNT weight for hydrgen detonation was determined considering the mechanical and chemical energies of hydrogen. A hydrogen detonation model for the converted equivalent TNT weight was made using design equations that improved the Kingery-Bulmash design chart of UFC 3-340-02. The hydrogen detonation model was validated for overpressure and impulse in comparison to the past experimental results associated with the detonation of hydrogen tank. A parametric study based on the blast scenarios was performed using the validated hydrogen detonation model, and design charts for overpressure and impulse according to the standoff distance from the center of charge was provided. Further, design charts of the three-stage structural damage and standoff distance of adjacent structures according to the level of overpressure and impact were proposed using the overpressure and impulse charts and pressure-impulse diagrams.

A basic study on the hazard of hydrogen feul cell vehicles in road tunnels (도로터널에서 수소차 위험에 관한 기초적 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.47-60
    • /
    • 2021
  • Hydrogen is a next-generation energy source, and according to the roadmap for activating the hydrogen economy, it is expected that industries to stably produce, store, and transport of hydrogen as well as the supply of hydrogen fuel cell vehicles will be made rapidly. Accordingly, safety measures for accidents of hydrogen vehicles in confined spaces such as tunnels are required. In this study, as part of a study to ensure the safety of hydrogen fuel cell vehicles in road tunnels, a basic investigation and research on the risk of fire and explosion due to gas leakage and hydrogen tank rupture among various hazards caused by hydrogen fuel cell vehicle accidents in tunnels was conducted. The following results were obtained. In the event of hydrogen fuel cell vehicle accidents, the gas release rate depends on the orifice diameter of TPRD, and when the gas is ignited, the maximum heat release rate reaches 3.22~51.36 MW (orifice diameter: 1~4 mm) depending on the orifice diameter but the duration times are short. Therefore, it was analyzed that there was little increase in risk due to fire. As the overpressure of the gas explosion was calculated by the equivalent TNT method, in the case of yield of VCE of 0.2 is applied, the safety threshold distance is analyzed to be about 35 m, and number of the equivalent fatalities are conservatively predicted to reach tens of people.

Hydrogen Absorption and Desorption Behaviors of the Metal Hydride Fuel Tank for Hydrogen Vehicle (수소저장합금을 이용한 수소자동차 연료저장탱크의 수소흡수-방출거동에 관한 연구)

  • Lee, Soo-Geun;Lee, Han-Ho;Jung, Jai-Han;Kim, Dong-Myung;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.2
    • /
    • pp.81-90
    • /
    • 1994
  • The hydrogen fuel tanks having hydrogen storing capacity of about 300g and 1200g are manufactured using $MmNi_{4.7}Al_{0.25}V_{0.05}Fe_{0.001}$ alloy. They are composed of several unit reactor made of Cu-tube(outer diameter = 50.1mm, thickness = 2mm). In order to increase the heat and mass transfer property of the hydride bed, Al-plates are inserted perpendicular to axial direction at intervals of 5mm and three arteries of diameter 8mm are installed symmetrically in each unit reactor. Hydrogen absorption is proceeded about 80% within 30 minute and is completed within 60 minute at the conditions of charging hydrogen pressure of 25atm and temperature of $22^{\circ}C$. On desorbing hydrogen at a constant rate of 30 slm at $20^{\circ}C$, discharging hydrogen pressure is sustained at 3~5atm for 120 minutes. The discharging pressure is increased upto 5~8atm as the increase of the reactor temperature to $30^{\circ}C$. From the experimental results and the brief discussions about the hydrogen absorption and disorption behaviors of the hydrogen storage tank, it is suggested that the behaviors of hydrogen charging and discharging could be controlled by adjusting the operating parameters and the reactor design parameters.

  • PDF

A Study on the Characteristics of Temperature Distribution Related to Geometry of Tube in Hydrogen Storage Vessel (수소 저장용 탱크의 튜브 형상에 따른 온도분포 특성에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;JEON, KYUNG SOOK;KIM, JAE KYU;PARK, JOON HONG;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.205-211
    • /
    • 2021
  • Recently, it is necessary for study on renewable energy due to environmental pollution and fossil fuel depletion. Therefore, in this study, the filling temperature according to the nozzle geometry was evaluated based on the limit temperature specified in SAEJ2601 for charging hydrogen, a new energy. There are three types of nozzles, normal, angle and round, fixed the average pressure ramp rate at 52.5 MPa/min, and the injection temperature was set at 293.4 K. As a result, the lowest temperature distribution was found in the round type, although the final temperature did not differ significantly in the three types of nozzles. In addition, Pearson's coefficient was calculated to correlate the mass flow rate with the heat transfer rate at the inner liner wall, which resulted in a strong linear relationship of 0.98 or higher.

Development and Analysis of the Highly Efficient Support System in a Liquid Hydrogen Vessel (액체수소 저장탱크용 고효율 지지 시스템 개발 및 해석)

  • Yun, Sang-Kook;Park, Dong-Heun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • Probably the most significant heat transfer in the cryogenic liquid hydrogen storage tank from the atmosphere may occur through its support system. In this paper the efficient support system for the cryogenic storage vessel was newly developed and analysed. The support system was composed of a spherical ball as a supporter to reduce the contact area. which is located between two supporting SUS tubes inserted SUS and PTFE blocks. Numerical analyses for temperature distribution, and the thermal stress and strain of the support system were performed by the commercial codes FLUENT and ANSYS. The heat transfer rate of the supporter was evaluated by the thermal boundary potential method which can consider the variation of thermal conductivity with temperature. The results showed that the heat transfer rate through the developed supporter compared with the common SUS tube supporter was significantly reduced. The thermal stress and strain were obtained well below the limited values. It was found that the developed supporter can be one of the most efficient support systems for cryogenic liquid storage vessel.

Design and Assessment of Reliquefaction System According to Boil Off Gas Reliquefaction Rate of Liquefied Hydrogen Carrier (액화수소 운반선의 증발가스 재액화 비율에 따른 재액화 시스템의 설계 및 평가)

  • Cho, Wook-Rae;Lee, Hyun-Yong;Ryu, Bo-Rim;Kang, Ho-Keun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.283-290
    • /
    • 2020
  • BOG (Boil Off Gas) generation is unavoidable in the liquefied hydrogen carrier, and proper measures are necessary to prevent pressure problems inside the cargo tank. The BOG can be used as propulsion fuel for ships, and the remaining parts used for propulsion must be effectively managed, such as in the form of reliquefying or burning. This study proposes an BOG reliquefaction system optimized for a 160,000 m3 liquefied hydrogen carrier with a hydrogen propulsion system. The system comprises a hydrogen compression and helium refrigerant section, and increases the efficiency by effectively using the cold energy of the BOG discharged from the cargo tank. In this study, the system was evaluated through the exergy efficiency and SEC (Specific Energy Consumption) analysis according to the rate of the reliquefaction of the BOG while the hydrogen BOG with a supply temperature of -220℃ entered the reliquefaction system. As a result, it showed SEC of 4.11 kWh/kgLH2 and exergy efficiency of 60.1% at the rate of reliquefaction of 20%. And the parametric study of the effects of varying the hydrogen compression pressure, inlet temperature of the hydrogen expander, and the feed hydrogen temperature was conducted.

CFD analysis of the effect of hydrogen jet flame in road tunnel (도로 터널 내 수소 제트 화염에 대한 CFD 해석 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Hwiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.629-636
    • /
    • 2022
  • Domestic eco-friendly vehicles currently account for 5.8% of the total registered vehicles in Korea. Hydrogen vehicles, one of the representative eco-friendly vehicles, have grown rapidly as they have been expanded to the market based on the government's policy to boost the hydrogen industry. Therefore, it is time to expand the safety review of hydrogen vehicles in various directions according to the increase in supply. In this study, the effect of internal heat damage was analyzed when a jet flame was generated by a hydrogen car in a road tunnel. It was simulated using Fluent, and the amount of jet flame injection was selected in consideration of the hydrogen tank capacity of commercial hydrogen vehicles for road tunnels. In addition, the study was conducted with the direction of the jet flame and the nozzle distance from the tunnel wall as variables. From the results, when the jet flame erupted in the road tunnel, high radiant heat emission of more than 20 kW/m2 was generated in most areas within ±5 m in the longitudinal direction based on the vehicle (spray nozzle) and 5 to 7 m in the lateral direction based on the adjacent tunnel wall.

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation (누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.