• 제목/요약/키워드: 수소 탱크

검색결과 104건 처리시간 0.029초

고체 수소를 이용한 군용 연료전지 차량

  • 이부윤
    • 기계저널
    • /
    • 제44권1호
    • /
    • pp.27-27
    • /
    • 2004
  • 미국 국방부 소속 육군차량사업부(National A Automotive Center)는 대체에너지를 이용한 군용 차량 개발을 위해 Michigan 주 Rochester Hills에 위치한 E Energy Conversion Devices(ECD) 사와 일부 기술 개발 에 대한 기술 제휴를 한다고 발표했다. 국방부는 태양전 지와 수소를 연료로 사용하는 대체에너지 차량을 개발하 기 위해 ECD에 1단계 연구에 필요한 연구비를 지원했다. 이번 연구에는 연료전지를사용한차량개발을위해 5 500,$\omega$0달러가 투자되는데, Texaco Ovollic Hydrogen S Systems(TOHC)의 고체 휴대용 수소 연료와 채충천 (refueling) 시스탬이 주요 개발 목표로 설정됐다. ECD의 역할은 최근 개발된 Toyota Prius에 시범 적으로 장착된 저압 고체형 수소 저장 시스템의 기술을 군용 차량에 알맞게 전환시키는 것이다. TOHC와 ECD가 개발한 고체형 수소 보관 시스댐은 고압을 요구하는 연료전지 차량의 수소 저 장 시스템이 갖고 있는 많은 문제점들을 해결할 수 있을 것으로 기대되는 연료전지를 이용한 엔진 개발 중 최신 기술이다. 특히 전투 상황에서 차량이 폭발하기 쉬운 수소 저장 탱크를 장착한 채 전 장으로간다는 것은적에게 노출 될 경우자살과마찬가지인 치명적인 피해를 입을수 있다. 이 프로젝트의 개요를 살펴보면, 수소 저장 시스템은 적어도 약 lOkg의 수소를 적은 용적 내에 낮은 압력에서 안전하게 고체 상태로 저장할 수 있다. 이 고체 저장 용기는 하루에 두 번 1.7kg의 수소를 10분 이내에 재급유할 수 있다. 수소는대부분고압가스형태나저온액체 형태로보관된다. 기체나액체 형태의 수소는 연료전 지에 사용되기에는 적합하지 않은 점이 많다. Ovonie 수소 저장 방법은 수소를 저압 고체 형태 ( (metal hydride)로 보관하는 방법으로, 고압 기체나 저온 액체가 갖고 있는 많은 문제점들을 해결 할수있다. 그림을 참조하면 고체 형태의 수소 보관 방법이 다른 보관 방법에 비교해 단위 체적당 최고 6배 많은수소질량을보관할수 있다. 이 고체 형태의 보관방법은수소가적절한합금과평형 압력 이 상의 환경에 놓일 경우 합금에 홉착되는 현상을 이용하고 있다. 수소를 흡수한 합금은 새로운 특성 을 가진 metal hydride로 변하게 된다. 이 과정 에서 열이 부산물로 발생한다. 반대로 수소를 metal hydride로부터 분리시키기 위해서는 합금을 가열해야 한다.

  • PDF

수소충전소 잠재적 위험에 대한 안전성해석 (Safety Analysis of Potential Hazards at Hydrogen Refueling Station)

  • 박우일;김동환;강승규
    • 한국가스학회지
    • /
    • 제25권4호
    • /
    • pp.43-48
    • /
    • 2021
  • 본 연구는 가스사고 전문해석 프로그램인 FLACS를 이용하여 진행하였다. 안전성해석 대상인 수소충전소는 압축설비, 저장탱크, 수소 배관 등으로 구성되어있다. 주요 시설 및 구성품의 설계 사양, 수소충전소 주변의 환경 조건 등을 반영한 후 잠재적 위험요인에 대한 안전성해석을 실시하였다. 국내 수소충전소는 2021년 기준 약 70여곳의 충전소가 보급되어있으며, 향후 2040년에는 1200기 도입이 예정되어있다. 수소충전소의 안전한 보급을 위해 잠재적 위험에 의한 발생 가능한 사고를 대비하고자 누출·확산 시나리오를 도출하여 안전성을 검토하고자 한다.

액화수소 저장탱크 안전성 확보를 위한 PSM 중점사항에 관한 연구 (A Study for Key Points of PSM to Guarantee the Safety of Liqufied Hydrogen Storage Tank)

  • 우명선;이창준
    • Korean Chemical Engineering Research
    • /
    • 제61권1호
    • /
    • pp.74-79
    • /
    • 2023
  • 수소 수요가 증가함에 따라 수소를 저장하기 위한 설비의 중요성이 대두되었으며, 국내에서는 다양한 법으로 수소 취급 설비를 규제하고 있다. 산업안전보건법에 따르면 저장량 5톤 이상의 액화수소를 취급하는 경우 공정안전관리 제도를 운용해야 한다. 하지만 현행 산업안전보건법에는 인화성을 띠는 저온액화 물질에 적용하기엔 적절하지 않은 기준이 있다. 본 연구에서는 산업안전보건법과 KOSHA Guide를 바탕으로 PSM 구성요소 중 공정안전자료와 안전운전 계획에서 수소취급 설비를 위해 개선되야 할 7개 주요 항목에 대해서 제시하였으며, 과학적인 분석을 통해 제시된 7개 항목이 어떤 방향으로 개선되어야 하는지 도출하였다.

알루미늄 분말 연소를 위한 고체 화학수소화물 기반 수소 점화 시스템 (Solid Chemical Hydride-Based Hydrogen Ignition System for Aluminum Powder Combustion)

  • 박길수;김태규
    • 한국추진공학회지
    • /
    • 제23권3호
    • /
    • pp.88-95
    • /
    • 2019
  • 수소 토치 점화 시스템은 순수한 알루미늄을 이용하여 점화가 가능하고 점화 방법이 간단해 알루미늄 연소 시스템으로 많이 사용되고 있다. 하지만 기존의 수소 토치 점화 시스템은 수소 공급을 위해 고압의 수소탱크가 필요해 무게가 무거워지는 단점이 있다. 이러한 문제를 해결하기 위해 본 연구에서는 고체 화학수소화물인 $NaBH_4$를 이용한 수소 점화 시스템을 설계하였다. $NaBH_4$는 약 $500^{\circ}C$에서 열분해가 시작되고 수소가 발생한다. $NaBH_4$ 열분해 특성에 영향을 미치는 변인들을 분석하고, $NaBH_4$ 기반 수소 점화 시스템을 이용해 알루미늄 연소 실험을 수행하여 실제 시스템 적용 가능성에 대해 검증 하였다.

수소 잔존 용량에 따른 수소 탱크 충전 시간 및 온도 변화 예측 (Prediction of Changes in Filling Time and Temperature of Hydrogen Tank According to SOC of Hydrogen)

  • 이현우;오동현;서영진
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.345-350
    • /
    • 2020
  • Hydrogen is an green energy without pollution. Recently, fuel cell electric vehicle has been commercialized, and many studies have been conducted on hydrogen tanks for vehicles. The hydrogen tank for vehicles can be charged up to 70 MPa pressure. In this study, the change in filling time, pressure, and temperature for each hydrogen level in a 59 L hydrogen tank was predicted by numerical analysis. The injected hydrogen has the properties of real gas, the temperature is -40℃, and the mass flow rate is injected into the tank at 35 g/s. The initial tank internal temperature is 25℃. Realizable k-epsilon turbulence model was used for numerical analysis. As a result of numerical analysis, it was predicted that the temperature, charging time, and the mass of injected hydrogen increased as the residual capacity of hydrogen is smaller.

이동식 진공 배기장치를 이용한 하나로 냉중성자원 가스블랭킷계통의 기능시험

  • 정창용;이수철;박국남;우상익;김영기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.330-330
    • /
    • 2010
  • 하나로 노심에서 발생하는 열중성자를 감속재인 액체수소층을 통과시켜 냉중성자를 생산 하는 설비인 냉중성자원 시설은 초경량 합금, 신소재 및 DNA 구조연구 등의 첨단기술연구에 유용한 도구로 활용될 계획이며, 현재 원자력연구원에서는 냉중성자원 시설을 개발하여 제작 설치하였고, 이 장치들에 대해 기능시험을 수행하였다. 냉중성자원 시설계통에서 가스블랭킷계통은 수소의 외부누출을 방지하고, 진공용기를 포함한 수조내기기 내부로 공기 및 경수가 유입되지 않도록 하여 냉중성자원을 보호하기 위한 역할을 수행한다. 또한 가스블랭킷계통의 구성은 가스공급장치($N_2$ 및 He 가스 실린더로부터 가스공급 기능), 질소충압탱크, 진공박스, 수소박스, 밸브박스 및 각 구역별 독립 배관 등으로 되어있다. 이동식 진공배기장치는 가스블랭킷계통에서 사용하기 위해 특수하게 제작된 장치로서 진공계통과 수소계통의 초기충진 시 또는 계통배기 시 잔류가스를 제거하거나, 블랭킷가스의 오염검사를 위한 시료채취 기능 등을 수행할 수 있도록 되어있다. 본 논문에서는 냉중성자원장치 내의 수소계통 및 진공계통의 배관과 기기를 외기와 경수로부터 안전하게 격리시키기 위해서 제작설치 적용된 가스블랭킷계통에서 이동식 진공배기장치를 이용하여 잔류가스 제거방법과 각 가스블랭킷 영역으로부터 시료를 채취하여 수행된 산소농도 분석에 대해 기술하였다.

  • PDF

액체수소 저장 탱크의 중력 방향 및 수소 충전율이 BOG에 미치는 영향에 관한 수치적 연구 (Numerical Study on the Effects of Gravity Direction and Hydrogen Filling Rate on BOG in the Liquefied Hydrogen Storage Tank)

  • 서영민;노현우;하동우;구태형;고락길
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.342-349
    • /
    • 2023
  • In this study, a numerical simulations were conducted to analyze the phase change behavior of a liquid hydrogen storage container. The effects of gravity direction and hydrogen filling rate on boil-off gas (BOG) in the storage container were investigated. The study employed the volume of fluid, which is the phase change analysis model provided by ANSYS Fluent (ANSYS, Canonsburg, PA, USA), to investigate the sloshing phenomenon inside the liquefied hydrogen fuel tank. Considering the transient analysis time, two-dimensional simulation were carried out to examine the characteristics of the flow and thermal fields. The results indicated that the thermal flow characteristics and BOG phenomena inside the two-dimensional liquefied hydrogen storage container were significantly influenced by changes in gravity direction and hydrogen filling rate.

대용량 액체 수소 저장탱크를 위한 다층단열재의 단열성능 분석 (Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks)

  • 김경호;신동환;김용찬;강상우
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.642-650
    • /
    • 2016
  • One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.

연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I) (The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I))

  • 김상현;최영민;황기호;심지현;황인철;임태원
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

하나로 냉중성자원 헬륨 이중배관의 특성

  • 최호영;김민수;손우정;이문;한재삼;조성환;허순옥;안국훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.361-361
    • /
    • 2011
  • 하나로 냉중성자원(CNS: Cold Neutron Source)은 원자로 수조내 반사체 탱크에 위치한 수직 조사공에 설치되어 하나로 노심에서 발생하는 열중성자를 감속재인 액체 수소층을 통과시켜 냉중성자를 생산한다. 생성된 냉중성자는 유도관을 통하여 냉중성자 산란장치에 공급되어 이용 연구에 활용된다. 감속재로 사용되는 수소는 헬륨냉동계통의 운전에 따라 수소가 수조내기기 집합체(IPA: In Pool Assembly) 내로 이동되어 액화되어지므로, 극저온의 헬륨가스의 흐름이 중요하다. 헬륨냉동기에 의해 만들어진 극저온인 헬륨은 IPA 내의 수소와 열교환을 하기 위해서 배관을 통해 이동되며, 열손실없이 전달하기 위하여 헬륨 배관은 진공층이 형성된 이중배관으로 설계되어 있다. 헬륨 이중배관은 공급 및 회수 배관으로 구성되어 있으며, 헬륨 배관의 외관에 진공층을 20개의 구간으로 나누어 제작 및 설치되었으며, 각각의 진공도를 유지하고 있다. 이 논문에서는 하나로 냉중성자원 헬륨 이중배관의 특성과 헬륨냉동계통의 운전 및 정지시 온도 변화에 따른 이중배관 진공도의 변화를 분석하였다.

  • PDF