• Title/Summary/Keyword: 수소 분위기에서 고 에너지 볼 밀링

Search Result 1, Processing Time 0.019 seconds

Reaction Rate with Hydrogen and Hydrogen-storage Capacity of an 80Mg+14Ni+6TaF5 Alloy Prepared by High-energy Ball Milling in Hydrogen (수소 분위기에서 고 에너지 볼 밀링으로 제조한 80Mg+14Ni+6TaF5합금의 수소와의 반응 속도와 수소 저장 용량)

  • PARK, HYE RYOUNG;SONG, MYOUNG YOUP
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2017
  • In the present study, Ni and $TaF_5$ were chosen as additives to enhance the hydriding and dehydriding rates of Mg. A sample with a composition of 80 wt% Mg + 14 wt% Ni + 6 wt% $TaF_5$ (named $80Mg+14Ni+6TaF_5$) was prepared by high-energy ball milling in hydrogen. Its hydriding and dehydriding properties were then examined. At the fourth cycle, the activated sample absorbed 3.88 wt% H for 2.5 min, 4.74 wt% H for 5 min, and 5.75 wt% H for 60 min at 593 K under 12 bar $H_2$. $80Mg+14Ni+6TaF_5$ had an effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of about 5.8 wt%. The sample desorbed 1.42 wt% H for 5 min, 3.42 wt% H for 15 min, and 5.09 wt% H for 60 min at 593 K under 1.0 bar $H_2$. Line scanning results by EDS for $80Mg+14Ni+6TaF_5$ before and after cycling showed that the peaks of Ta and F appeared at different positions, indicating that the $TaF_5$ in $80Mg+14Ni+6TaF_5$ was decomposed.