• Title/Summary/Keyword: 수소투과도

Search Result 101, Processing Time 0.024 seconds

Fabrication and Hydrogen Separation Performance of Newly Created Ti-Based Alloy Membrane (신조성의 Ti-기반 합금 수소분리막의 설계 및 수소투과 성능)

  • Min Yeong Ko;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Sung Woo Han;Si Eun Kim;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.146-153
    • /
    • 2024
  • In this experiment, a Ti-based flat hydrogen separation membrane was designed and manufactured. In order to find a Ti-based hydrogen separation membrane of a new composition, the correlation between the physical-chemical properties and hydrogen permeability of various alloys was investigated. Based on this, two types of new alloy films (Ti14.2Zr66.4Ni12.6Cu6.8 (70 ㎛), Ti17.3Zr62.7Ni20 (80 ㎛)) was designed and manufactured. The manufactured flat hydrogen separation membrane was tested for hydrogen permeation using mixed gas (H2, N2) and sweep gas (Ar) at 300~500℃ and 1~4 bar. The Ti14.2Zr66.4Ni12.6Cu6.8 alloy film has a maximum flux of 16.35 mL/cm2 min at 500℃ and 4 bar, and the Ti17.3Zr62.7Ni20 alloy film has a maximum flux of 10.28 mL/cm2 min at 450℃ and 4 bar.

Vapor Permeation Separation of MTBE-Methanol Mixtures Using Cross-linked PVA Membranes (가교된 PVA 막을 이용한 MTBE/methanol 혼합물의 증기투과(Vapor Permeation)분리)

  • 김연국;임지원
    • Membrane Journal
    • /
    • v.10 no.3
    • /
    • pp.148-154
    • /
    • 2000
  • Poly(vinyl alcohol)(PVA)/sulfur-siccinic acid(SSA) membrane performances have been studied for the vapor permeation separation of methyl tort-butyl ether(MTBE)/methanol mixtures with varying operation temperatures, amount of cross-linking agents, and feed compositions. 1'here are two factors, the membrane network and the hydrogen bonding, in the swelling measurements of PVA/SSA membranes. These two factors act interdependently on the membrane swelling. The sulfuric acid group in SSA took an important role in the membrane performance. The cross-linking effect might be more dominant than the hydrogen bonding effect due to the sulfuric acid group at 7% SSA membrane. Hydrogen bonding effect was more important for 5% SSA membrane. In vapor permeation, density or concentration of methanol in vapor feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membrane shows the highest separation factor of 2187 with the flux of 4.84g/$m^2$hr for MTBE/methanol=80/20 mixtures at 3$0^{\circ}C$.

  • PDF

Durability of MEA Using sPEEK Membrane Reinforced with Poly Imide in PEMFC (고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성)

  • Lee, Hye-Ri;Na, Il-Chai;Oh, Sung-Jun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.296-301
    • /
    • 2017
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, sulfonated poly (ether ether ketone) (sPEEK) membrane reinforced with poly imide was made to enhance of membrane durability. In order to test durability of single (un-reinforced) membrane and reinforced membrane MEA (Membrane and Electrode Assembly), degradation accelerated stress test was used. Before and after degradation, I-V polarization curve, hydrogen crossover current, electrochemical surface area, membrane resistance and charge transfer resistance were measured. As a result of experiments, hydrogen crossover current of reinforced MEA was lower than that of single MEA, therefor durability of reinforced MEA was higher than that of single MEA. There was not especially short phenomena in reinforced MEA after degradation accelerated stress test.

Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP) (Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성)

  • Yi, Eunjeong;Hwang, Haejin
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Influence of Concentration Polarization Phenomenon on the Vapor Permeation Behavior of VOCs/$N_2$ Mixture Through PDMS Membrane (VOCs/$N_2$ 혼합물의 PDMS막을 통한 증기투과시 농도분극 현상이 투과거동에 미치는 영향)

  • 염충균;이상학;송해영;이정민
    • Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.50-59
    • /
    • 2001
  • Influence of concentration polarization has been investigated on the vapor permeation of VOCs/$N_2$ mixture. Po]y(dimethylsiloxane)(PD,vIS) membrane which had a good affinit~, toward VOCs was emploj,'c'Cl in this study. The chlorinated hydmcarbons which were part of homologous series of chrolomelhane and chrolocthane were used as organic vapor. The vapor permeation experiments were calTied out at various VOCs feed concentrations. operating temperatures and feed flow rates. With decreasing feed flow rate. the membrane perfonnance, that is. penneation rate and selectivity were reduced in the permeation of VOCs/$N_2$ mixture. Especially the reducing of the membrane performance was founel to be more significant when the condensibility of voe was greater. voe content in the feed mixture was higher or operating temperature was lower. These observations were discussed in terms of the influence of con-centration polarizalion on the permeation of VOCSINl mixture through the PDMS membrane.

  • PDF

Evaluation of Concentration Polarization at Feed in the Permeation of VOCs/$N_2$ mixtures through PDMS membrane (VOCs/질소 혼합물 증기투과시 공급액부 경계층에서의 농도분극 분석을 위한 모델식 확립)

  • 염충균;이상학;최정환;이정민
    • Membrane Journal
    • /
    • v.11 no.2
    • /
    • pp.74-82
    • /
    • 2001
  • By using a phenomenological approach, model equations incorporating the resistance-in¬series concept were established to evaluate quantitatively concentration polarization in the boundary layer in feed adjacent to the membrane surface in the vapor permeation and separation of volatile organic compounds (VOCS)/$N_2$ mixture through po]y(dimethylsiloxane) (PDMS) membrane. The vapor permeations of various VOCS/$N_2$ mixtures through PDMS membrane were carried out at various feed flow rates. Chlorinated hydrocarbons, such as, methylene chloride, chlorofonn, 1,2-clichloroethane and 1,1,2-trichloroethane were used as organic vapor. By fitting the model equations to the experimental penneation data. the model parameters were detennined. respectively. Both the mass transfer coefficient of VOC across tbe boundary layer and concentration polarization modulus as a measure of the extent of concentration polarization were eitimated Quantitatively by the mooe1 equations with the determined model parameters. From the analysis on the detennined model parameters, the boundary layer resistance due to the concentration polarization of VOCs component was found to be more significant when the condensability of voe was greater. This study seeks to emphasize the importance of the boundary resistance on the vapor penneation of the vapor/gas mixtures with high permeability and high selectivity towards the minor component VOC.

  • PDF

Crystallization of a-Si : H thin films deposited by RF plasma CVD method (플라즈마 화학기상증착법으로 성장시킨 수소화 비정질 규소박막의 결정화)

  • 김용탁;장건익;홍병유;서수정;윤대호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.2
    • /
    • pp.56-59
    • /
    • 2001
  • Thin films of hydrogenated amorphous silicon (a-Si : H) of different compositions were deposited on Si(100) wafer and glass by RF plasma-enhanced chemical vapor deposition (PECVD). In the present work, we have investigated the effect of the If. power on the properties, such as optical band gap, transmittance and crystallinity, of crystalline silicon thin films. Raman data show that the material consists of an amorphous and crystalline phase for the co-presence of two peaks centered at 480 and 520cm$^{-1}$. X-ray spectra confirmed of crystallites with (111) orientation at 300w The transmittance of thin films was measured by UV-VIS spectrophotometer. In addition, Si-H chemical bondings were studied by Fourier Transform Infrared (FT-IR) spectroscopy.

  • PDF

Water Repellent Coating of Carbon Cloth with Different Size PTFE and Gas Permeabilities (PTFE 크기 변화에 따른 Carbon Cloth 발수 코팅과 가스 투과도 변화)

  • Jeon, Hyeon;Cho, Tae-Hwan;Choi, Weon-Kyung
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • Carbon cloth was impregnated into PTFE emulsion. PTFE is a fluoropolymer used as a coating material in various fields due to its hydrophobicity and excellent mechanical properties. In this study, PTFE emulsion was prepared different particle size of 5~500 nm and $3{\sim}5{\mu}m$. FE-SEM and FT-IR spectroscopy were used microscopic observation and investigation of chemical structure change after PTFE coating. Mass variations, gas permeability and water contact angles were analyzed to determine a GDL performance of PTFE coated carbon cloth. PTFE coated carbon cloth show different mass increase according as PTFE concentration and the number of coating times. Water contact angle of PTFE coated carbon cloth was not effected by size of PTFE particle and the number of coating time; meanwhile, gas permeability was rapidly changed at carbon cloth coated by emulsion with size of $3{\sim}5{\mu}m$ PTFE particle.

Preparation and Their Characterization of Blended Polymer Electrolyte Membranes of Polysulfone and Sulfonated Poly(ether ether ketone) (Polysulfone/SPEEK 블랜드 고분자 전해질 막 제조 및 특성 연구)

  • Cheon, Hun-Sang;Oh, Min;Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • Poly(ether ether ketone)(PEEK) was sulfonated using sulfuric acid and blended with polysulfone with various ratios. The blended polymer electrolyte membranes were characterized in terms of methanol permeability, proton conductivity and ion exchange capacity. As the amount of sulfonated PEEK increased, both methanol permeability and proton conductivity increased. This was due to the increase of ion exchange capacity. The experimental results indicated that the blend membrane with 20% polysulfone was the best choice In terms of the ratio of proton conductivity to methanol permeability.