• Title/Summary/Keyword: 수소스테이션

Search Result 32, Processing Time 0.031 seconds

A Study on the Quantitative Risk Assessment of Mobile Hydrogen Refueling Station (이동식수소스테이션 정량적 위험성평가에 관한 연구)

  • KIM, DONG-HWAN;LEE, SU-MIN;JOE, CHOONG-HEE;KANG, SEUNG KYU;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.605-613
    • /
    • 2020
  • In July and October of this year, the government announced the 'Green new deal plan within the Korean new deal policy' and 'Strategies for proliferation of future vehicles and market preoccupation'. And, in response to changes in the global climate agreement, it has decided to expand green mobility such as electric vehicles and hydrogen electric vehicles with the aim of a "net-zero" society. Accordingly, the goal is to build 310 hydrogen refueling stations along with the supply of 60,000 hydrogen vehicles in 2022, and the hydrogen infrastructure is being expanded. however, it is difficult to secure hydrogen infrastructure due to expensive construction costs and difficulty the selection of a site. In Korea, it is possible to build a mobile hydrogen station according to the safety standards covering special case of the Ministry of Industry. Since the mobile hydrogen station can be charged while moving between authorized place, it has the advantage of being able to meet a large number of demands with only one hydrogen refueling station, so it is proposed as a model suitable for the early market of hydrogen infrastructure. This study demonstrates the establishment of a hydrogen refueling station by deriving a virtual accident scenario for leakage and catastrupture for each facility for the risk factors in a mobile hydrogen station, and performing a quantitative risk assessment through the derived scenario. Through the virtual accident scenario, direction of demonstration and implications for the construction of a mobile hydrogen refueling station were derived.

Hydrogen generation from water by using VHF ICP (초고주파 유도결합플라즈마를 사용하여 물로부터 수소제조)

  • Kim, Dae-Un;Chu, Won-Il;Jang, Su-Uk;Jeong, Yong-Ho;Lee, Bong-Ju;Ju, Jeong-Hun;Gwon, Seong-Gu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.143-143
    • /
    • 2008
  • 초고주파 유도결합플라즈마는 에너지전달효율이 높고, 고밀도플라즈마의 발생이 용이하기 때문에, 물 플라즈마에 적용하면, 물로부터 고효율 수소제조가 용이하고, 빠른 응답특성으로 향후 도시형 수소스테이션 등에 적용이 기대되는 첨단기술 분야이다. 본 연구에서는 공급유량, 반응기압력, 플라즈마 출력 등의 공정변수에 따른 물분해 효율을 분석하여 에너지 효율이 높은 운전조건을 찾아내기 위한 연구를 수행하여 약 65% 정도의 물분해 효율과 플라즈마 watt당 0.22 sccm의 수소 생성 결과를 얻었다.

  • PDF

Hydrogen production from dimethyl Ether (디메틸 에테르를 이용한 수소 생산)

  • Lee Sang-Heon;Yim Sung-Dae;Park Gu-Gon;Yu Sang-Phil;Yoon Young-Gi;Kim Chang-Soo;Park Seung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.303-305
    • /
    • 2005
  • 현재 인류가 직면하고 있는 에너지 및 환경 문제를 해결할 수 있는 최선의 대안으로서 수소 에너지 및 연료전지 기술에 대한 연구가 활발히 진행 중이다. 본 연구에서는 디메틸 에테르를 이용한 수소 생산 기술에 대한 연구를 수행하였다 디메틸 에테르(BATE)는 안정한 화합물로서 비 활성적이고 부식성이 없으며 발암성 및 마취성이 얼어 인체에 무해한 청청 연료로서 각광을 받고 있으며 특히 기존의 LPG 인프라를 그대로 사용할 수 있는 장점 등으로 수소 스테이션 및 소형 연료전지용 수소 발생기 등에의 적용을 위한 연구가 활발히 진행 중이다. 본 연구에서는 이러한 응용을 위한 수소 발생기용 DME 개질 반응기의 개발을 위하여 본 반응에 대한 촉매 종류의 영향, 공간속도의 최적화, 반응 메카니즘에 따른 촉매 선정, 반응온도 등의 다양한 반웅 조건에 대한 영향을 확인하고 실제 소형 연료전지를 위한 수소공급 장치로서 적용코자 마이크로채널 반응기에 적용하여 마이크로채널 DME 개질반응기의 컴팩트한 수소공급 장치로서의 적용 가능성을 평가하였다.

  • PDF

Development of $20\;Nm^3$/hr Hydrogen Generator for Hydrogen Fueling Station (수소스테이션용 $20\;Nm^3$/hr급 수소제조장치 개발)

  • Oh, Young-Sam;Baek, Young-Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.263-271
    • /
    • 2006
  • In this study, $20\;Nm^3/hr$ scale compact hydrogen generator which can be apply to the hydrogen station was manufactured and tested. The design of $20\;Nm^3/hr$ scale compact hydrogen generator was upgraded on the base of $5\;Nm^3/hr$ scale plate hydrogen generator concept stacking the plate reactors. Ideas for improving system efficiency such as heat recovery from the exhaust, exhaust duct which is especially design for plate type reactor, reinforcement of insulation, enlargement of heat exchange area of reactor, introduction of desulphurizer reactor and PROX rector in a compact design etc. were applied. From the performance test, we can learn that the $20\;Nm^3/hr$ scale compact hydrogen generator can be operated steadily at 100% road condition and the methane conversion of over 94%(at S/C=3.75) was obtained. This result shows that the concept of plate type hydrogen generator can be scale-up to the $20\;Nm^3/hr$ scale and fit for hydrogen generator for on site hydrogen station application.

A Study on Analysis of Operation Data Monitoring Based on Demonstration of Hydrogen Refueling Station (수소 복합스테이션 실증기반 운영데이터 모니터링 분석 연구)

  • KIM, DONG-HWAN;PARK, SONG-HYUN;KU, YEON-JIN;KIM, PIL-JONG;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.505-512
    • /
    • 2019
  • According to the "hydrogen economy roadmap" announced recently by the government, fuel cell electric vehicle diffusion and hydrogen refueling station construction are actively being carried out to prepare for the hydrogen economy era. The station will be expanded by introducing various charging station models such as hydrogen complex charging station, package, and mobile. Accordingly, the study on the safety demonstration of the charging station and related regulations should be compromised. The purpose of this study is to collect monitoring data during charging according to the distinct four seasons in Korea, and to use it as safety demonstration data by analyzing the charging status, charging rate and charging time during charging.

Performance test of scale-up $20Nm^3/hr$ scale hydrogen generator for hydrogen station (수소스테이션용 $20Nm^3/hr$급 수소제조장치 스케일-업 및 성능시험)

  • Oh, Young-Sang;Baek, Young-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.37-42
    • /
    • 2006
  • In this study, $20Nm^3/hr$ scale compact hydrogen generator which can be apply to the hydrogen station was tested for hydrogen station application. $20Nm^3/hr$ scale compact hydrogen generator was developed by upgrading concept of stacking plate reactor from former $20Nm^3/hr$ scale plate hydrogen generator. concepts for improving system efficiency and performance include such as idea of heat recovery from the exhaust, exhaust duct which is especially design for plate type reactor reinforcement of insulation, enlargement of heat exchange area of reactor, introduction of desulphurizer reactor and PROX rector in a compact design, introduction of back fire protection structure of plate burner and so on, We can learn that final prototype of scale-up $20Nm^3/hr$ scale compact hydrogen generator can be operated steadily in 100% road at which over 94% of methane conversion(S/C=3.75) was obtained. In case of making up the weak point, we expect that it is possible to apply to hydrogen station by way of showing an example.

  • PDF

Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications (Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용)

  • Moon, Dong Ju;Ryu, Jong-Woo;Yoo, Kye Sang;Lee, Byung Gwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.274-282
    • /
    • 2004
  • This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

Simulation for the Evaluation of Reforming Parameter Values of the Natural Gas Steam Reforming Process for a Small Scale Hydrogen-Fueling Station (소규모 수소 충전소용 천연가스 수증기 개질공정의 수치모사 및 공정 변수 값의 산정)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yu-Taek;Roh, Hyun-Seog;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.12-25
    • /
    • 2007
  • Numerical simulation of the natural gas steam reforming process for on-site hydrogen production in a $H_2$ fueling station was conducted on the basis of process material and heat balances. The effects of reforming parameters on the process efficiency of hydrogen production were investigated, and set-point values of each of the parameters to minimize the sizes of unit process equipments and to secure a stable operability of the reforming process were suggested. S/C ratio of the reforming reactants was found to be a crucial parameter in the reforming process mostly governing both the hydrogen production efficiency and the stable operability of the process. The operation of the process was regarded to be stable if the feed water(WR) as a reforming reactant could evaporate completely to dry steam through HRSG. The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas(NGR) and WR as reforming reactants and natural gas(NGB) as a burner fuel were also determined for the hydrogen production rate of $27\;Nm^3/h$.

Development of Hydraulic Compressor for Hydrogen Station (수소스테이션용 유압 압축기 개발)

  • Cho, Sung-Min;Roh, Gyeong-gil;Yeom, Ji-woong;lee, Seung-kuk;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.158-163
    • /
    • 2018
  • Major producers have already built compressors since World War I and have been monopolizing all domestic and overseas markets based on the accumulated technology, and the dependency of the manufacturers over the entire industry is deepening. Therefore, it is expected that the technological gap with developed countries will be larger without development of the related technology. Therefore, it is necessary to develop a unique technology for a new type of high efficiency compression system. In this study, we present localization of Hydraulic Compressor which can meet the technical trends such as cost reduction, efficiency improvement, environmental friendliness, wide operating range, low capacity / high capacity compatibility, size reduction, easy operation and easy maintenance.

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.