• Title/Summary/Keyword: 수소발생장치

Search Result 163, Processing Time 0.029 seconds

Simultaneous Removal of $SO_2$ and NOx Using Ozone Generator and Absorption- Reduction Technique (오존발생장치와 흡수환원법을 이용한 배기가스 동시 탈황 탈질 공정)

  • Mok, Young-Sun;Lee, Joo-Hyuck;Shin, Dong-Nam;Koh, Dong-Jun;Kim, Kyong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.191-196
    • /
    • 2006
  • The injection of ozone, produced by dielectric barrier discharge, into the exhaust gas gives rise to a rapid oxidation of NO that is the main component of nitrogen oxides($NO_x$) in most practical exhaust gases. Once NO is converted into $NO_2$, it on readily be reduced to $N_2$ in the next step by a reducing agent such as sodium sulfide and sodium sulfite. The reducing agents used ca also remove $SO_2$ effectively, which makes it possible to treat $NO_x\;and\;SO_2$ simultaneously. The present two-step process made up of an ozonizing chamber and an absorber containing a reducing agent solution was able to remove about 95% of the $NO_x$ and 100% of the $SO_2$, initially contained in the simulated exhaust gas. The formation of $H_2S$ from sodium sulfide was prevented by using a strong basic reagent(NaOH) together with the reducing agent. The removal of $NO_x$\;and\;SO_2$ was more effective for $Na_2S$ than $Na_2SO_3$.

Removal of Phenanthrene by Electrokinetic-Fenton Process in a 2-dimensional Soil System (동전기-펜턴 공정을 이용한 2차원 토양 정화장치에서의 phenanthrene 제거)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.11-17
    • /
    • 2005
  • Characteristics of phenanthrene removal in the Electrokinetic (EK)-Fenton process were investigated in a 2-dimensional test cell in a viewpoint of the effect of gravity and electrosmotic flow (EOF). When the constant voltage of 100 V was applied to this system, the current decreased from 1,000 to 290 mA after 28 days, because soil resistance increased due to the exhaustion of ions in soil by electroosmosis and electromigration. Accumulated EOF in two cathode reservoirs was 10.3 L and the EOF rate was kept constant for 28 days. At the end of operation, the concentration of phenanthrene was observed to be very low near the anode and increased in the cathode region because hydrogen peroxide was supplied from anode to cathode region following the direction of EOP. Additionally, the concentration of phenanthrene decreased at the bottom of the test cell because the electrolyte solution containing hydrogen peroxide was largely transported toward the bottom due to a low capillary action in the soil with high porosity. Average removal efficiency of phenanthrene by EK-Fenton process was 81.4% for 28 days. In-situ EK-Fenton process would overcome the limitations of conventional remediation technologies and effectively remediate the contaminated sites.

A study on Safety Management and Control in Wet-Etching Process for H2O2 Reactions (습식 에칭 공정에서의 과산화수소 이상반응에 대한 안전 대책 및 제어에 관한 연구)

  • Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.650-656
    • /
    • 2018
  • The TFT-LCD industry is a kind of large-scale industrial Giant Microelectronics device industry and has a similar semiconductor process technology. Wet etching forms a relatively large proportion of the entire TFT process, but the number of published research papers on this topic is limited. The main reason for this is that the components of the etchant, in which the reaction takes place, are confidential and rarely publicized. Aluminum (Al) and copper (Cu), which have been used in recent years for the manufacture of large area LCDs, are very difficult materials to process using wet etching. Cu, a low-resistance material, can only be used in the wet etching process, and is used as a substitute for Al due to its high speed etching, low failure rate, and low power consumption. Further, the abnormal reaction of hydrogen peroxide ($H_2O_2$), which is used as an etching solution, requires additional piping and electrical safety devices. This paper proposes a method of minimizing the damage to the plant in the case of adverse reactions, though it cannot limit the adverse reaction of hydrogen peroxide. In recent years, there have been many cases in which aluminum etching equipment has been changed to copper. This paper presents a countermeasure against abnormal reactions by implementing safety PLC with a high safety grade.

Experimental Evaluation and Resident's Assessment of Zero Food Waste System in Multi-family Housing Estates (공동주택단지의 음식물쓰레기 제로하우스 시스템 실용화를 위한 현장 시험운영 및 거주자 평가)

  • Oh, Jeongik;Lee, Hyunjeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.674-681
    • /
    • 2015
  • This research conducts both experimental evaluation and resident's assessment of zero food waste system (ZFWS) in multifamily housing estates in order to explore the feasibility of ZFWS embedded in fermentation and extinction technology utilizing wood chips turned into fertilizer. Having been established in a multifamily housing estate, ZEFWS was proved to be functional and effective. During the 3-month experimental period, the weight between infused food waste and its reactor was reduced significantly enough, and the chemical analysis showed that the concentration of organic compounds went from 87.9% to 75.8%, $H_2O$ decreased from 69.7% to 45.5%, NaCl rose from 0.2% to 0.5%, pH increased from 4.6 to 7.8, and ATP escalated from 505.3 nmol/L to 723.5 nmol/L. Also, the chemical analysis of the output in the experimentation indicated adequacy of the organic fertilizer. In the self-administered questionnaire survey for residents participating in the field project, almost all the respondents viewed that ZFWS can compete with conventional food waste disposal methods and an idealistic way to upcycling food waste into fertilizer.

Determination of Volatile Organic Compounds emitted from Municipal Solid Waste Landfill Site by Thermal Desorption-Cryofocusing-GC/FID/FPD (열탈착-저온농축-GC/FID/FPD에 의한 도시 생활폐기물 매립장에서 방출되는 휘발성 유기화합물의 측정에 관한 연구)

  • Kim, Man-Goo;Jung, Young-Rim;Seo, Young-Min;Nam, Sung-Hyun;Kwon, Young-Jin
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.274-285
    • /
    • 2001
  • In this study, the thermal desorption-cryofocusing-gas chromatographic(TD-C-GC) method was developed for determination of volatile organic compounds(VOCs) in ambient air and was applied at the municipal solid waste landfill sites. On-column cryofocusing was possible only with a 100 ml dewars bottle in TD-C-GC method with a stainless steel column. However, high operating pressure was needed for purging VOCs from the absorbent trap, which was able to solve by pressure programming with a electric pressure controller. By using both pressure and temperature programming brought increasing of resolution power in on-column cryofocusing method, but the high pressure caused a leakage of sample tube with repeated use. A loop cryofocusing devise was also developed and compared with the direct on-column method. In loop cryofocusing method, VOCs were concentrated on a 0.8mm i.d. loop which is located between the injector and separation column by using liquid nitrogen. In order to purge VOCs from the absorbent trap, only 0.4 psi of pressure was need in the loop cryofocusing method. Dual detection system was applied for the analysis of VOCs; a FID was used for hydrocarbons and a FPD was used for sulfur-containing compounds. Qualitative analysis was done by on-column cryofocusing GC-MS system. Among the large number of VOCs, toluene was the most abundant. Hydrogen sulfide, dimethyl sulfide, carbon disulfide, dimethyl disulfide and methyl propyl disulfide were detected at landfill site by FPD.

  • PDF

Generation of calibration standard gases using capillary gas divider: uncertainty measurement and method validation (다중 모세관을 이용한 교정용 표준가스의 제조: 불확도와 유효성 평가)

  • Lee, Sangyun;Hwang, Eun-Jin;Jung, Hye-Ja;Lee, Kwang-Woo;Chun, Ki-Joon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.369-375
    • /
    • 2006
  • Calibration gas mixtures were prepared using dynamic volumetric method according to ISO 6145-5 and the uncertainty was evaluated. Ten identical capillaries with 0.25 mm in inner diameter and 50 cm in length were applied in this system. Dilution ratio of parent gas was determined by the number of capillaries that passes parent gas and that passes balance gas through. Capillaries were made of Teflon which had good chemical stability against adsorption of gaseous substances. Mechanical valves were introduced in this system in order to minimize the thermal effect of solenoid valves. Concentration of prepared gases were compared with master grade standard gases in cylinders made by RiGAS Co. and calibration of the instrument were completed using comparison method according to ISO 6143. Experimental results showed that the coefficient of variance of diluted oxygen standard gases showed less then 0.2% in most dilution range, that of diluted hydrogen sulfide standard gases showed less then 1.0%. Therefore, it is proven that the standard gases prepared by this system are appropriate to be used as a calibration standards in ambient monitoring, etc.

Effect of Au content on the electro-catalytic activity of Pt catalyst for Pt-Au/C composite catalyst (Pt-Au/C 복합촉매에 있어서 Au 혼합비가 Pt 촉매의 활성에 미치는 영향)

  • Jo, Jin-Nyeong;Song, Jae-Chang;Song, Mink-Young;Song, Hyun-Min;Lee, Hong-Ki;Yu, Yeon-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.143.1-143.1
    • /
    • 2010
  • 고분자 전해질막 연료전지(Polymer Electrolyte Membrane Fuel Cell; PEMFC)는 수소를 이용하여 전기를 발생시키는 친환경적이고 이상적인 발전장치로 고효율과 높은 전류밀도를 가지며 그 응용분야가 다양하다. 저온에서 작동하는 PEM fuel cell은 전극에서 효과적인 산화환원반응을 위해 그 촉매로 활성이 우수한 Pt(Platinum)을 사용하고 있으나, Pt의 높은 가격은 연료전지의 상용화에 걸림돌이 되고 있다. 본 연구에서는 연료전지의 Pt/C 촉매 층에서 Pt의 분산성을 높여 Pt의 담지량을 줄이고 작동 중 발생하는 Pt의 응집 현상을 방지하여 Pt의 수명을 연장시킬 목적으로, Au(gold) 나노입자를 첨가한 Pt-Au/C 복합나노촉매를 제조하였다. 본 발표에서는 합성된 Pt-Au/C 복합촉매 중 Au 첨가량이 Pt 촉매의 활성에 미치는 영향을 조사하기 위하여, 복합촉매 중에 금속(Pt+Au)의 총 함량이 30 wt.%와 40 wt.% 인 Pt-Au/C 촉매에 대하여 각각 Au 첨가량을 변화시켜, cyclic voltammetry 법에 의해 Au 첨가 효과를 조사한 결과에 대하여 보고하고자 한다. Au 나노입자를 제조하기 위한 출발 물질로는 $HAuCl_4{\cdot}4H_2O$를 이용하였고 trisodium citrate와 $NaBH_4$를 환원제로 하여, 입경이 5~8 nm 인 Au 콜로이드를 제조하였다. Pt-Au/C 복합나노촉매를 제조하기 위하여 먼저 Au/C 복합분체가 제조되었다. 0.03g의 carbon이 첨가된 carbon 현탁액에 합성된 Au 콜로이드 수용액을 첨가한 후 24시간 동안 교반하여 Au/C 복합분체를 제조하였다. 이 Au/C 복합분체에 $H_2PtCl_6{\cdot}6H_2O$ 수용액을 현탁하고 methanol 을 환원제로 사용해 Pt를 환원 석출시켜 Pt-Au/C 복합촉매를 제조하였다. Pt-Au/C 복합 나노촉매에서 Pt와 Au를 다양한 비율(3:1, 2.5:1.5, 2:2)로 합성하였으며 Pt-Au/C 복합촉매 중 금속(Pt+Au) 촉매의 총 함량은 30 wt.%와 40 wt.%로 각각 제조되었다. Au 나노입자 콜로이드의 분산성은 UV-visible spectrum의 흡광도에 의해 관찰되었고, Pt-Au/C 복합 나노촉매의 형상 및 분산성 분석은 transmission electron microscopy(TEM)에 의해 이루어졌다. 또한, 촉매의 전기화학적 특성평가는 cyclic voltammetry(CV)에 의해 조사되었다.

  • PDF

Pyrolytic Gasification Characteristics of Waste Tires and Waste Synthetic Resins (폐타이어 및 폐합성수지류의 건류가스화 특성)

  • 노남선;김광호;신대현;김동찬
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 2000
  • Characteristics of pyrolytic gasification were examined for the waste tire and 7 types of waste synthetic resin, using a bench scale experimental facility. the product gas temperature of waste tires was $150~300^{\circ}C$ and the temperature profile in the combustion zone of the lower reactor part tended to be clearly distinguished from that in the gasification zone of the upper part. However, in the case of waste synthetic resins, there were no clear distinction and temperature fluctuation was severe, depending on the reaction time. Product gas quantity, which depends on that of supplied (1st) air, was found to be 105~135% of the 1st air amount at the steady state. The concentration of noncombustible components in product gas was 80~90 vol.% and the high heating value of the product gas calculated from gas compositions was 1,500~3,000 kcal/N㎥ for waste tire, and 300~2,900 kcal/N㎥ for waste synthetic resins, respectively. Heating value of product gas and combustible gas concentration were increased in proportion to 1st air amount when 1st air amount is below $0.35N\textrm{m}^3$/min.

  • PDF

A Study on the Fire Characterization of Foam block using Cone-calorimeter and FTIR (콘칼로리미터와 적외선분광계(FTIR)를 이용한 폼블럭의 연소특성에 대한 실험적 연구)

  • Han, Bong-Hoon;Seo, Dong-Ho;Kwon, Young-Hee;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.23-32
    • /
    • 2017
  • Foam block, popularized as the self-interior goods, is susceptible to fire since the main material is the polyethylene flammable synthetic resin. However, it is widely used in homes, offices, and multi-use facilities. In order to understand the fire characteristics of the foam block, two kinds of foam blocks sold in the market (non-fire retardant and fire retardant) were evaluated according to standard of KS F 5660-1 (Reaction to fire test). In addition, the hazard analysis of the gas generated by the combustion of the specimen was performed using the FTIR gas analyzer. The cone calorimeter test showed that the ignition and flame combustion of both two specimens were burned as soon as the radiant heat blocking device was removed, and it was confirmed that the flame could become a rapid propagation factor during the fire. The analysis of the combustion gas through the FTIR gas analyzer showed that both the carbon dioxide and carbon monoxide classified as the common combustion gases and the acrolein, ammonia, and hydrogen cyanide causing serious damage to the human body were detected substantially. This study showed that a foam block product has high ignitionability and generates toxic gases. Hence, it is urgently required to establish the standards used for properly classifying the combustion characteristics of the material on the basis of the use conditions of a foam block product and to prepare the standards on the purpose of use.

Effects of Ozonation of the Swine Nursery Building on Indoor Air Quality and Growth Performance of Weanling Piglets (오존 처리가 자돈사내 공기의 질과 자돈의 성장 효율에 미치는 영향)

  • Kim, K.W.;Woo, J.H.;Lee , C.Y.;Kim, D.H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.1061-1066
    • /
    • 2003
  • The present study was performed to investigate the effect of ozonation of the swine nursery building on indoor air quality and growth efficiency of the weanling piglets. Forty 21-day-old, cross-bred weanling piglets were housed in two ozonated or unozonated pens(10 males and 10 females per pen) for 3 wk alternately in a swine nursery building and this procedure was repeated three times. Ozone was generated using a commercial apparatus outside the nursery building and infused into the nursery building through a duct at a level of 0.03 ppm. Indoor concentrations of harmful gases were measured at 2-h intervals for a 24-h period per each 3-wk feeding trial. Indoor ammonia and carbon dioxide gas concentrations were reduced by the ozonation(P〈0.01) by 21% and 7%, respectively, compared with those of the control(unozonation), although hydrogen sulfide concentration was not affected by the treatment. However, the weight gain, feed intake and feed/gain of the piglets did not change due to the ozonation. Results suggest that ozonation of the swine nursery building is effective for improving the indoor air quality without affecting the production efficiency of weanling piglets.