• Title/Summary/Keyword: 수분-열 팽창

Search Result 22, Processing Time 0.02 seconds

Enhanced Properties of Epoxy Molding Compound by Plasma Polymerization Coating of Silica (실리카의 플라즈마 중합 코팅에 의한 에폭시 봉지재의 물성 향상 연구)

  • Roh, J.H.;Lee, J.H.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • Silica for Epoxy Molding Compound (EMC) was coated via plasma-polymerization with RF plasma (13.56 MHz) as a function of treatment time, power and pressure. 1,3-diaminopropane, allylamine, pyrrole, 1,2-epoxy-5-hexene, allylmercaptan or allylalcohol were utilized for plasma polymerization coating and adhesion of coated silica was evaluated by measuring flexural strength. CTE and water absorption of EMC were also measured, and fracture surface of flexural specimen was analyzed by SEM in order to elucidate the failure mode. The plasma polymer coated silica was analyzed by FT-IR and reactivity of plasma polymer coating with epoxy resin was evaluated with DSC in order to investigate the adhesion mechanism. The EMC prepared from the silica coated with 1,3-diaminopropane or allylamine exhibited high flexural strength, low CTE, and low water absorption compared with the control sample, and also exhibited 100% cohesive failure mode. These results can be attributed to the chemical reaction between the functional groups in the plasma polymer coating and epoxy resin, and also consistent with the results from FT-IR and DSC analysis.

  • PDF

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.