• Title/Summary/Keyword: 수분증발량

Search Result 301, Processing Time 0.031 seconds

Effects of Soil Aggregate Stability and Wettability on Infiltration and Evaporation (토양입단(土壤粒團)의 안정성(安定性)과 친수성(親水性)이 수분침투(水分浸透) 및 증발(蒸發)에 미치는 영향(影響))

  • Jo, In-Sang;Cho, Seong-Jin;Verplanke, H.;Hartmann, R.;De Boodt, M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.121-127
    • /
    • 1985
  • This study was designed to gain practical data on the use of soil conditioners for more efficient water managements and to establish the optimum levels of structural properties for soil conditioning. A sandy loam and a silt loam soil were each treated with two different soil conditioners, hydrophobic Bitumen or hydrophilic Uresol. The perspex tube 34 cm long were packed homogeneously with air dried soil up to 2 cm below the top, then covered over 2 cm of treated or untreated aggregates. The infiltration rate into the soil columns was measured under simulated rainfall condition. The evaporation study was carried out in the wind tunnel, and the changes of soil moisture distribution of the columns following and during the evaporation were determined by a gamma ray scanner. The infiltration rate of water into the soil column was increased to 18.7-50.8% by the Uresol treatment but it was decreased to less than 25% of control by the Bitumen treatment. Evaporation was decreased to 22.0-68.1% by the Bitumen treatment and to 38.7-68.4% by the Uresol treatment. The water use efficiency of Uresol treated column was increased to more than twice as much as that of untreated soil. Aggregate stability and wetting angle were related to water infiltration and evaporation. A positive and highly significant logarismic relationship was found between the infiltration rate and stability index-wetting angle, evaporation rate and instability index-wetting angle. It was considered that the structural stability is more important than wetting angle. This is true because the structural stability is always positively correlated to water saving, however wettability is positively correlated to the infiltration, and negatively correlated to water saving during the evaporation.

  • PDF

Analysis of evapotranspiration in the Seolmacheon catchment (설마천 유역의 증발산량 분석)

  • Dong Phil Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.322-322
    • /
    • 2023
  • 유역의 증발산량 자료는 물순환 과정을 규명하는 매우 중요한 자료 중의 하나이며, 물순환 성분별 명확한 산정 결과는 수자원 개발과 물환경 보전에 중요한 정보를 제공할 수 있다. 본 논문에서는 한국건설기술연구원에서 운영하는 설마천 유역(전적비교 수위관측소 기준, 유역면적 8.48km2)의 5개년(2018~2022) 기상관측자료를 이용하여 증발산량을 산정하였으며, 그 외 강우량, 하천유출량, 지하수함양량 자료를 이용하여 물수지 분석도 수행하였다. 증발산량 산정은 세계식량기구(FAO)에서 제시한 Penman-Monteith equation을 적용하여 일별 증발산량을 산정하였으며, 작물의 종류에 따른 계수는 잔디의 경우를 채택하였다. 본 방법을 통해 산정된 증발산량(ET0)은 기준작물에 수분의 공급에 제한이 없는 상황에서 산정된 기준 증발산량(reference evapotranspiration)을 의미하며, 기준 증발산량을 실제 증발산량으로 변환하기 위해서는 작물계수를 고려해야 한다. 작물계수는 식생의 높이, 알베도, 식생의 저항, 토양으로부터의 증발 등의 영향을 받게 되나, 더욱더 명확하게는 식물에서의 증산을 설명하는 기본 작물계수와 토양에서의 증발을 설명하는 토양계수의 합을 통해 계수를 산정하게 된다. 설마천 유역에 공간적으로 분포된 작물계수를 정확히 산정하기에는 한계가 있으므로 잔디의 경우로 한정하여 산정된 기준증발량은 885.9mm(5개년 평균값)이다. 각 물순환 성분별로 생성된 설마천 유역의 5개년 평균값인 유역평균강우량은 1,307.3mm이며, 하천유출량은 799.7mm(유역평균강우량 대비 61.2%), 실제 증발산량은 469.5mm(유역평균강우량 대비 35.9%, 기준 증발산량 대비 약 53.0%), 유역저류량은 38.1mm(유역평균강우량 대비 2.9%)이다. 유역평균강우량은 3개 관측소(감악산, 설마리, 전적비교) 강우량의 유역평균값이며, 하천유출량은 유역출구의 수위-유량관계곡선식 환산유량, 유역저류량은 과거년(2012~2018)의 지하수 관측자료를 통해 산정된 지하수함양량을 기초로 하였다. 그리고 실제 증발산량은 기준 증발산량 산정값과 전체적인 물수지 분석을 통해 얻어진 값이다. 이와 같이 산정된 물순환 성분별 자료는 유역의 물순환 과정 규명을 위한 기초자료로 매우 유용하게 활용될 수 있으며, 유역 물관리를 위한 의사결정 과정에 중요한 역할을 할 수 있을 것으로 기대된다.

  • PDF

Analysis of evapotranspiration in the Imjin River Basin (임진강 유역의 증발산량 분석)

  • Dong Phil Kim;Joo Hun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.323-323
    • /
    • 2023
  • 유역의 증발산량 자료는 물순환 과정을 규명하는 매우 중요한 자료 중의 하나이며, 물순환 성분별 명확한 산정 결과는 수자원 개발과 물환경 보전에 중요한 정보를 제공할 수 있다. 본 논문에서는 임진강 유역(유역출구(한강합류점) 기준, 유역면적 8,138.9km2)을 대상으로 5개년(2018~2022) 기상관측자료를 이용하여 증발산량을 산정하였으며, 그 외의 수문관측자료를 통해 물수지 분석도 수행하였다. 증발산량 산정은 세계식량기구(FAO)에서 제시한 Penman-Monteith equation을 적용하여 일별증발산량을 산정하였으며, 작물의 종류에 따른 계수는 잔디의 경우를 채택하였다. 본 방정식을 통해 산정된 증발산량(ETo)은 기준작물에 수분의 공급에 제한이 없는 상황에서 산정된 기준 증발산량(reference evapotranspiration)을 의미하며, 기준 증발산량을 실제 증발산량으로 변환하기 위해서는 작물계수를 고려해야 한다. 작물계수는 식생의 높이, 알베도, 식생의 저항, 토양으로부터의 증발 등의 영향을 받게 되나, 더욱더 명확하게는 식물에서의 증산을 설명하는 기본 작물계수와 토양에서의 증발을 설명하는 토양계수의 합을 통해 계수를 산정하게 된다. 임진강 유역에 공간적으로 분포된 작물계수를 정확히 산정하기에는 한계가 있으므로 잔디의 경우로 한정하여 산정된 기준 증발량은 833.0mm(5개년 평균값)이다. 각 물순환 성분별로 생성된 임진강 유역의 5개년 평균값인 유역평균강우량은 1,412.9mm이며, 하천유출량은 804.9mm(유역평균강우량 대비 57.0%), 실제 증발산량은 442.3mm(유역평균강우량 대비 31.3%, 기준 증발산량 대비 약 53.0%), 유역저류량은 165.7mm(유역평균강우량 대비 11.7%)이다. 유역평균강우량은 8개 관측소(양덕, 원산, 신계, 개성, 평강, 철원, 동두천, 파주) 강우량의 유역평균값이며, 하천유출량은 유역출구의 상류 관측소인 비룡대교 관측소(유역면적 6,784.0km2) 유출량의 유역면적비 적용값이다. 실제 증발산량은 기준 증발산량 산정값에 해당 유역내 존재하는 설마천 유역의 기준 증발산량과 실제 증발산량 비율(약 53.0%)을 적용한 값이며, 유역저류량은 전제적인 물수지 분석을 통해 얻어진 추정값이다. 이와 같이 산정된 물순환 성분별 자료는 유역의 물순환 과정 규명을 위한 기초자료로 매우 유용하게 활용될 수 있으며, 유역 물관리를 위한 의사결정 과정에 중요한 역할을 할 수 있을 것으로 기대된다.

  • PDF

Analysis of Hydrological Changes by Variation of Reservoir Environment Using SWAT Model (SWAT 모형을 이용한 저수지 환경변화에 따른 수문 분석)

  • Shin, Hyung Jin;Lee, Ji Wan;Ryu, Joon Sang;Kang, Seok Man;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.305-305
    • /
    • 2018
  • 저수지 상류부 환경변화 분석을 위해 환경변화 시나리오 적용 분석할 수 있는 수문모형(SWAT)을 선정하여 수양(함동)호 유역을 포함하는 송산관측소를 유역출구로 하여 유출량 자료가 있는 2015~2016년을 대상으로 모형을 검?보정하였다. 수양(함동)호는 댐 높이 13.5m에서 15.1m로 증고 되었으며 총저수량은 7,472 천$m^3$에서 11,926 천$m^3$로 증가하였다. 모형 검증결과 모형효율이 0.9로 모형 적용가능성을 확인하였으며 둑높이기 사업 전(2001-2010)과 사업 후(2015-2016)을 모의하여 사업 전?후의 수문요소(강우, 유출, 침투, 증발산, 침루, 토양수분, 지하수 증발, 지하수함양) 모의결과를 정리하였다. 사업 전(2001-2010) 평균 강수량 1549.8 mm, 유출량 907.9 mm, 침투량 615.4 mm, 증발산량 624.2 mm, 침루량 241.1 mm, 토양수분 355.7 mm, 지하수 함양량 222.5 mm로 모의 되었다. 사업 후(2015-2016) 평균 강우량 1100.1 mm, 유출량 370.4 mm으로 극심한 가뭄으로 나타났다. 사업 전 비슷한 강우량을 나타낸 2006년 지하수 함양량은 186.9 mm이고 2016년은 222.9 mm로 지하수 함양량이 사업 후 증가한 것으로 판단된다.

  • PDF

Re-evaluating the complementary relationship for estimating evapotranspiration considering altitudinal effect in Jeju Island (제주도 고도 영향을 고려한 증발산 보완관계 재평가)

  • Kim, Chul-Gyum;Kim, Nam-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.458-458
    • /
    • 2017
  • 증발산은 지표면으로부터의 증발이나 식물에 의한 증산에 의해 유역으로부터 물이 제거되는 주요 기작으로서, 유역 물수지 관점에서 보았을 때 강수량과 증발산량의 차이로부터 유출이나 함양되는 양을 추정할 수 있다. 제주도의 경우에는 수자원 이용량의 약 84%를 지하수에 의존하고 있으며, 한편으로 제주도의 지질학적 특성으로 인해 일정 규모 이하의 강수량은 지표유출이나 중간유출의 과정없이 대부분 지하로 침투되기 때문에, 증발산량을 정확하게 파악하는 것이 지하수 함양량의 추정과 제주도 전체 수자원 계획에 큰 영향을 주게 된다. 정확한 증발산량 파악을 위해서는 지속적인 관측과 전문적인 계측장비 등에 의한 직접적인 방법이 있으나 광범위한 유역 단위의 관측값을 확보하는 것이 현실적으로 어렵기 때문에, 물수지법, 열수지법, 공기역학적방법 및 조합방법 등의 간접적인 방법이 많이 활용되고 있다. 간접적인 방법으로 많이 활용되고 있는 Penman-Monteith 법은 일 단위 기반의 정확도 높은 증발산량을 추정할 수 있는 장점이 있으나, 작물생육단계 및 토양수분, 기상 등 많은 변수들에 대한 입력을 요구하고 있기 때문에 복잡한 모델링 과정을 수반하게 되는 단점을 내포하고 있다. 반면, Morton (1978)의 CRAE (Complementary Relationship Areal Evapotranspiration)나 Priestly and Taylor (1973)의 AA (Advection-Aridity)와 같이 잠재증발산량과 실제증발산량간의 보완관계를 이용하는 방법은 지역적인 인자 또는 가용 수분에 대한 조건없이 몇 가지 기상자료만으로 유역의 증발산량을 산정할 수 있다는 장점이 있다. 본 연구에서는 제주도 지역의 4개 하천유역(한천, 천미천, 강정천, 외도천)을 대상으로, Penman-Monteith 법을 적용한 SWAT 모델링를 통해 얻어진 유역의 실제증발산량과 잠재증발산량으로부터, 고도에 따른 기상특성을 반영하여 증발산 보완관계를 검토하였다.

  • PDF

원격탐사 자료를 이용한 미계측 유역의 수문정보 추출

  • 채효석;김성준;고덕구
    • Water for future
    • /
    • v.37 no.3
    • /
    • pp.44-49
    • /
    • 2004
  • 지표 수문학(surface hydrology)은 강수에 의한 수자원의 발생, 육지나 하천, 그리고 해양에서 발생하는 증발이나 유출 등에 의한 수자원의 손실과 저수지나 댐에서 수위 상승, 토양수분이나 적설의 증가, 그리고 지하수면의 상승 등에 의한 저류량의 증가 등을 종합적으로 설명하는 과학이다. 수자원의 발생이나 손실, 그리고 저류량의 증가를 설명하기 위해서는 질량보존의 법칙과 같은 단순한 물수지 방정식을 이용한다. 그러나, 지표면에서 발생되는 증발이나 식물에 의해서 발생되는 증산 등과 같은 증발산 작용은 에너지를 수반하기 때문에 수문학적인 수지를 규명하기 위해서는 물수지와 에너지수지를 동시에 이용해야 한다.(중략)

  • PDF

Study on the Characteristic Analysis of Soil Moisture (토양수분량 측정 현황 및 분석)

  • Lee, JungHoon;Jang, Eunse;Lee, YeonKil;Kim, SangHyun;Jung, SungWon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.223-223
    • /
    • 2016
  • 수문 순환과 물 수지에 관한 연구는 강수량, 지표유출량, 지하수, 토양수분 및 증발산량 등에 대한 관측이 이루어질 때 실제로 규명될 수 있다. 특히 국내 지형의 대부분을 차지하고 있는 산림 사면에서 토양수분량 측정은 물순환을 이해하는데 중요한 것으로 판단된다. 본 연구는 국토교통부의 기초수문자료 구축사업의 일환으로 수행되고 있으며, 수문자료의 다양화 목적을 가지고 TDR(Time Domain Reflectometry, TDR) 장비를 이용하여 2시간 간격으로 2015년 3월부터 12월까지 측정을 수행하였다. 관측지점은 경기도 파주시 적성면 설마리의 설마천 유역 내에 위치한 감악산내 범륜사 주변 사면과, 충청북도 음성군의 청미천 유역내의 수레의산 산지 사면에서 수행하였다. 관측소에서 측정된 토양수분량 자료는 토양수분량의 시공간적 분포 특성을 파악하기 위해 토양수분량의 통계분석(평균, 표준편차, 변동계수)를 수행하였다. 설마천유역의 설마천 관측소에서는 2015년 강수량이 적어 2014년의 토양수분량 평균값보다 낮게 측정되었다(평균 12.96%, 표준편차 2.2%). 청미천유역의 청미천 관측소에서도 설마천관측소와 마찬가지로 과거보다 적은 강수량이 발생하였지만, 설마천 관측소와는 다르게 안정적인 토양수분 평균값을 유지하는 것은 설마천 관측소 보다 토양층이 발달하고 토성의 점토 함량이 상대적으로 높기 때문으로 보인다. 청미천 관측소의 토양수분량은 평균 24.3%, 표준 편차 1.7%로 나타났다.

  • PDF

Assessing the Climate Change Impacts on Future Upland Drought using the Soil Moisture Model and CMIP5 GCMs (CMIP5 GCMs와 토양수분모형을 이용한 기후변화에 따른 미래 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Hong, Eun-Mi;Hwang, Seon-Ah
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.66-66
    • /
    • 2020
  • 최근 기후변화로 인한 전 세계적인 기온상승이 야기되고 있으며, 농업에 직접적인 영향을 주는 기상학적 및 수문학적 변화가 급격하게 진행되고 있다. 우리나라의 경우 최근 7년 동안 지역별로 극심한 가뭄이 매년 발생하고 있고, 가뭄의 발생 빈도와 강도가 증가하는 추세이다. 특히 밭의 경우 농업용 저수지 등 수리시설물로부터 관개용수를 공급받는 논 작물과 달리 자연 강우를 통해 필요한 용수량을 공급받는 천수답이 대부분이고 관개시설이 부족하기 때문에, 기후변화에 의한 가뭄의 취약성이 높다. 밭작물은 작물의 생육 시기와 기후 환경, 수자원 환경에 민감하고 토양수분을 흡수함으로써 생육하기 때문에 이러한 밭작물의 소비수량 및 관개용수량은 증발산량 뿐만 아니라 토양내 수분의 이동을 고려하여 수분 부족량을 산정해야 한다. 본 연구에서는 미래 기후변화에 의한 밭가뭄 평가를 위하여 밭 작물별 소비수량 및 관개용수량을 추정하기 위한 밭 토양수분 물수지 모형 (Soil Moisture Model)을 구성하였다. 또한 대표농도경로 (Representative Concentration Pathway, RCP) 시나리오 기반의 제5차 결합기후모델상호비교사업 (Coupled Model Intercomparison Project Phase 5, CMIP5)에서 제공하는 RCP 시나리오를 기반으로 한 전지구 기후모델 (General Circulation Model, GCM)의 기후예측결과를 적용함으로써 미래 밭 가뭄 평가를 수행하였다. 과거 기상자료 및 미래 대표농도경로 시나리오와 작물 기초자료를 수집하여 과거 및 미래 작물증발산량을 산정하였으며, 토양수분 물수지 모형에 적용하여 밭작물의 토양수분 변화를 모의하고 기후변화에 따른 작물별/생육시기별 소비수량 및 관개용수량을 추정하였다.

  • PDF

Development of Runoff Simulation Model from Paddy Block - System formulation and Development - (관개블럭에서의 유출량 추정 모형 개발 - 시스템의 개발 및 구성 -)

  • Kim, Hak-Kwan;Park, Seung-Woo;Im, Sang-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1954-1958
    • /
    • 2006
  • 본 연구에서는 관개블럭에서의 유출량을 추정할 수 있는 모형을 개발하였다. 개발된 모형은 관개량 자료, 기후 자료, 강우량 자료, 토양특성 자료 등을 입력받아 관개블럭의 담수심, 증발산량, 심층 침루량, 측방침윤량, 지표배수량 등을 모의하여 유출량을 추정할 수 있도록 구성하였다. 논에서의 물수지방정식을 기본으로 담수심을 추정하고, FAO 수정 Penman식을 이용하여 증발산량을 산정하며, 근역(root zone)의 토양수분을 고려하여 실제증발산량을 산정할 수 있도록 하였다. 심층 침루량(deep percoloation)은 정상상태의 흐름방정식과 Richard식을 이용하여 산정하며, 지표배수량은 광정웨어공식과 Runge Kutta법을 이용하여 추정한다. 관개블럭에서의 최종유출량은 지표배수 관개량, 지표배수량, 침윤손실량의 합으로 계산하도록 모형을 구성하였다.

  • PDF

Is that possible to simulate daily runoff with one parameter? (하나 매개변수로 유출 모의 가능한가?)

  • Noh, Jaekyoung;An, Hyunuk;Lee, Jaenam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.29-29
    • /
    • 2017
  • 유역의 물수지를 강수, 증발산, 토양수분저류, 유출 등 성분으로 구성하고, 토양수분저류 상태에 따라 증발산과 유출이 변화하는 식을 기본식으로 구성하였으며, 물수지를 개선하는 매개변수를 변수화하는 개념을 도입하여 다음 식의 모형을 개발하였다. 여기서, ETa는 실제증발산량, ETo는 잠재증발산량, Q는 유출량, S는 토양수분저류량이고, C1은 증발산, C2, ${\alpha}$는 유출반응, C3, C4는 매개변수 ${\alpha}$를 변수화시키는 데 관련한 매개변수이다. $$ETa(i)=(1-e^{-c1{\times}s(i)}){\times}ETo_{(i)}$$ $$Q_{(i)}=S_{(i)}{\times}(1-e^{-c2{\times}s(i)})^{[(c3+e^{-c4{\times}s(i)}){\times}a]}$$ 모형의 검증을 위해 Monte Calro 기법으로 최적 매개변수를 결정한 결과 수많은 매개변수 조합이 최적영역에 분포되는 것을 확인하였으며, 이를 바탕으로 매개변수 하나만 남겨 놓고 나머지 매개변수는 상수화시켜도 모의결과가 똑같다는 결과를 관찰하였으며, 이를 토대로 하나 매개변수만으로 일 유출 모의가 가능하다고 결론을 내렸다. 하나의 매개변수는 ${\alpha}$를 우선 추천하고, C1도 유역의 토지이용에 따라 증발산이 변화하기 때문에 의미있다고 판단하고 있다. 하나의 매개변수를 결정하는 방법은 유출 자료가 있으면 유출량으로, 없으면 유출률을 맞추는 방법이며, 일반화하기 쉽고 실용성이 매우 높은 것으로 평가된다. 유역면적 $209km^2$인 보령댐의 2007년부터 2009년까지 Monte Calro 기법으로 매개변수를 결정한 결과 C1=0.0196, C2=0.0023, C3=0.3230, C4=0.0051, ${\alpha}=2.3304$ 이었으며, 이 때 연평균 강우량 1221.2mm, 유출량 651.2mm, 유출률 53.3%이었으며, $R^2=0.833$, RMSE=2.073, NSE=0.831이었고, 관측 유출량 610.8mm, 유출률 50.0%였다. 매개변수 C1, C2, C3, C4를 고정시키고 유출률 50%에 이를 때 ${\alpha}$는 2.6946이었으며, 이 때 $R^2=0.831$, RMSE=2.102, NSE=0.826이었고, 매개변수 C2, C3, C4, ${\alpha}$를 고정시키고 유출률 50%에 이를 때 C1은 0.0255이었으며, 이 때 $R^2=0.833$, RMSE=2.083, NSE=0.829이었다. 한편 똑같은 자료로 탱크모형은 $R^2=0.79$, RMSE=2.43, NSE=0.77이었고, SWAT 모형은 $R^2=0.56$, RMSE=3.97, NSE=0.40으로 나타난 것과 비교할 때, 개발된 모형의 성능이 우수한 것이라 결론내릴 수 있었다.

  • PDF