• Title/Summary/Keyword: 수분보유모델

Search Result 9, Processing Time 0.019 seconds

A Review on Measurement Techniques and Constitutive Models of Suction in Unsaturated Bentonite Buffer (불포화 벤토나이트 완충재의 수분흡입력 측정기술 및 구성모델 고찰)

  • Lee, Jae Owan;Yoon, Seok;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.329-338
    • /
    • 2019
  • Suction of unsaturated bentonite buffers is a very important input parameter for hydro-mechanical performance assessment and design of an engineered barrier system. This study analyzed suction measurement techniques and constitutive models of unsaturated porous media reported in the literature, and suggested suction measurement techniques and constitutive models suitable for bentonite buffer in an HLW repository. The literature review showed the suction of bentonite buffer to be much higher than that of soil, as measured by total suction including matric suction and osmotic suction. The measurement methods (RH-Cell, RH-Cell/Sensor) using a relative humidity sensor were suitable for suction measurement of the bentonite buffer; the RH-Cell /Sensor method was more preferred in consideration of the temperature change due to radioactive decay heat and measurement time. Various water retention models of bentonite buffers have been proposed through experiments, but the van Genuchten model is mainly used as a constitutive model of hydro-mechanical performance assessment of unsaturated buffers. The water characteristic curve of bentonite buffers showed different tendencies according to bentonite type, dry density, temperature, salinity, sample state and hysteresis. Selection of water retention models and determination of model input parameters should consider the effects of these controlling factors so as to improve overall reliability.

A Numerical Model of Three-dimensional Soil Water Distribution for Drip Irrigation Management under Cropped Conditions (작물 흡수를 고려한 3차원 토양수분 분포 모델 개발을 통한 최적 점적 관개 연구)

  • Kwon, Jae-Phil;Kim, Seung-Hyun;Yoo, Sun-Ho;Ro, Hee-Myong
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2000
  • A numerical model of three-dimensional soil water distribution for drip irrigation management under cropped conditions was developed using Richards equation in Cartesian coordinates. The model accounts for both seasonal and diurnal changes in evaporation and transpiration, and the growth of plant root and the shape of root zone. Solutions were numerically approximated using the Crank-Nicolson implicit finite difference technique on the block-centered grid system and the Gauss-Seidel elimination in tandem. The model was tested under several conditions to allow the flow rates and configurations of drip emitters vary. In general, simulation results agreed well with experimental results and were as follows. The velocity of soil-water flow decreased drastically with distance from the drip source, and the rate of expansion of the wetted zone decreased rapidly during irrigation. The wetting front of wetted zone from a surface drip emitter traveled farther in vertical direction than in horizontal direction. Under this experimental weather condition, water use efficiency of a drip-irrigated apple field was greatest for 4-drip-emitter system buried at 25 cm, resulting from 10% increase in transpiration but 20% reduction in soil evaporation compared to those for surface 1-drip emitter system. Soil moisture retention curve obtained using disk tension infiltrometer showed significant difference from the curve obtained with pressure plate extractor.

  • PDF

80K 200W급 단단 G-M 극저온 냉동기 개발에 따른 성능평가(2)

  • Lee, Dong-Ju;Han, Myeong-Hui;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.93.1-93.1
    • /
    • 2015
  • 근래 디스플레이 분야에서 OLED가 시장을 주도하면서 이 공정에 가장 적합한 진공펌프로 크라이오 펌프가 주목을 받고 있다. 화소 형성 공정에 사용되는 유기물이 수분에 취약하기 때문인데, 크라이오 펌프가운데서 특별히 수분만 집중적으로 배기할 수 있는 워터펌프(CWP or cold trap)가 각광받고 있다. 이에 HM GVT는 중소기업청 중소기업개발지원사업의 일환으로 진행된 2014년도 구매조건부 신제품 개발사업에 선정되어 '극저온 G-M냉동기를 이용한 대용량 Cold Trap개발' 과제를 수행하면서 32인치 급으로 수분에 대해서 30,000 [L/s] 이상의 배기속도를 가지는 대형 CWP를 개발하고 있다(수요처: (주)아바코). 통상적으로 흡기구가 30인치라면 수분 배기속도는 대략 65,000 L/s에 이르고 200 W 냉각능력이면 최대 수분 분압 0.008 mbar에서 작동시킬 수 있다. 따라서 1차년도의 목표는 큰 배기용량과 대형 사이즈의 CWP를 개발하기 위해 80 K에서 200 W 이상의 냉동능력을 보유한 단단 G-M 극저온냉동기를 선행 개발하는 것이다. 이에 현재 최대 냉동능력 80 K에 130 W의 냉동능력을 가지는 HPS055모델을 이용하여 다양한 예비시험들을 수행하여 최적의 설계인자들을 도출하였고 이를 근거로 80 K에서 200 W 이상의 냉동능력을 가지는 HPS80200모델을 설계 및 제작, 성능시험을 수행하였다. 이에 국내 최초로 80 K에서 200 W의 냉동능력을 가지는 단단 G-M냉동기를 개발하였고 설계 및 제작에 대한 원천기술을 확보할 수 있었다.

  • PDF

Nutrient and Water Uptake of Tomato and Cucumber Plant by Rockwool and Perlite in medium Culture (암면과 펄라이트 배지에 따른 토마토와 오이의 양분흡수 특성)

  • 김형준;김완순;우영회;조삼증
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.77-78
    • /
    • 2001
  • 순환식 양액재배에서 근권부 배지의 종류가 작물의 양분흡수에 미치는 영향을 구명하고자 하였다. 배지별 양액흡수량은 토마토 및 오이 모두 같은 경향이었는데, 단위일사량당 양액흡수량을 보면 오이는 생육 전반기인 6월 5일까지 지속적으로 양액흡수가 이루어지다가 일사량에 따라 전체 양액의 흡수가 변화하였다. 그러나 단위일사량당 양액흡수량은 생육 후반기에 일정한 수준을 유지하였는데 이것은 노화된 하엽을 제거하였기 때문으로 보인다(Fig 1). 배지에 따른 양액흡수량은 전체적으로 암면에서 생육 후기까지 다소 높은 경향을 보였으나 통계적으로 유의성은 인정되지 않았다. 또한 배지간의 무기이온 흡수율은 이온별로 차이가 있었으나 모든 이온에서 유의성은 인정되지 않았다. 배지에 따른 무기이온 흡수량은 전체적으로 암면에서 생육 후기까지 다소 높은 경향을 보였으나 통계적으로 유의성은 인정되지 않았다(Fig. 2). 작물의 생육 및 수량에서도 암면에서 전반적으로 높은 경향을 보였으나 통계적으로 유의성을 보이지는 않았으나 오이의 엽중은 암면에서 무거웠고 엽건물중도 차이가 있었다. 기타 생육 요소간에는 유의성이 인정되지 않았지만 암면에서 다소 좋은 경향을 보였다(Table 1). 따라서 작물의 무기이온 흡수량을 추정하는 모델식의 입력요소로 배지 종류는 적합하지 않았으며 다만 수분 보유력이 좋은 암면에서 양액 흡수량이 많았다는 결과를 얻었다.

  • PDF

An Experimental Study on the Durability Characterization using Porosity (시멘트 모르타르의 공극률과 내구특성과의 관계에 대한 실험적 연구)

  • Park, Sang Soon;Kwon, Seung-Jun;Kim, Tae Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.171-179
    • /
    • 2009
  • The porosity in porous media like concrete can be considered as a durability index since it may be a routine for the intrusion of harmful ions and room for the keeping moisture. Recently, modeling and analysis techniques for deterioration are provided based on the pore structure with the significance of durability and the relationship between porosity and durability characteristics is an important issue. In this paper, a series of mortar samples with five water to cement ratios are prepared and tests for durability performance are carried out including porosity measurement. The durability test covers those for compressive strength, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient. They are compared with water to cement ratios and porosity. From the normalized data, when porosity increases to 1.45 times, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient decrease to 2.3 times, 2.1 times, 5.5 times and 3.7 times, respectively, while compressive strength decreases to 0.6 times. It was evaluated that these are linearly changed with porosity showing high corelation factors. Additionally, intended durability performances are established from the test results and literature studies and a porosity for durable concrete is proposed based on them.

Effect of Hypotonic and Hypertonic Solution on Brining Process for Pork Loin Cube: Mass Transfer Kinetics (돼지고기 등심의 염지공정에서 소금농도의 영향: 물질전달 동역학을 중심으로)

  • Park, Min;Lee, Nak Hun;In, Ye-Won;Oh, Sang-Yup;Cho, Hyung-Yong
    • Food Engineering Progress
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • The impregnation of solid foods into the surrounding hypotonic or hypertonic solution was explored as a method to infuse NaCl in pork loin cube without altering its matrix. Mass transfer kinetics using a diffusive model as the mathematical model for moisture gain/loss and salt gain and the resulting textural properties were studied for the surrounding solutions of NaCl 2.5, 5.0, 10.0 and 15% (w/w). It was possible to access the effects of brine concentration on the direction of the resulting water flow, quantify water and salt transfer, and confirm tenderization effect by salt infusion. For brine concentrations up to 10% it was verified that meat samples gained water, while for processes with 15% concentration, pork loin cubes lost water. The effective diffusion coefficients of salt ranged from 2.43×10-9 to 3.53×10-9 m2/s, while for the values of water ranged from 1.22×10-9 to 1.88×10-9 m2/s. The diffusive model was able to represent well salt gain rates using a single parameter, i.e. an effective diffusion coefficient of salt through the meat. However, it was not possible to find a characteristic effective diffusion coefficient for water transfer. Within the range of experimental conditions studied, salt-impregnated samples by 5% (w/w) brine were shown with minimum hardness, chewiness and shear force.

Influence of Estimation of Hydraulic Conductivity Function on Rainfall Infiltration into Unsaturated Soil Slope (투수계수함수의 추정이 불포화 토사 사면의 강우 침투거동에 미치는 영향)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.5-22
    • /
    • 2017
  • The procedure that combines the result of infiltration analysis into stability analysis based on the limit equilibrium method is widely used to evaluate the impact of rainfall infiltration on slope stability. Accurate prediction of rainfall infiltration is essential to the prediction of landslides caused by rainfall, requires to obtain accurate unsaturated hydraulic properties of the soil. Among the unsaturated hydraulic characteristics of the soil, the importance of the soil-water characteristic curve describing the retained water characteristics of the soil is relatively well known and the measurement by test method to obtain the SWCC is gradually increasing. However, it takes a lot of time and expenses to experimentally measure the unsaturated conductivity characteristics of the soil. Therefore, it is common practice to estimate the hydraulic conductivity function from the SWCC. Although it is widely known that the SWCC has a great influence on rainfall infiltration, studies on the effect of the hydraulic conductivity function estimated from the SWCC on rainfall infiltration are very limited. In this study, we explained how the estimation model of the hydraulic conductivity function affects rainfall infiltration and slope stability analysis. To this end, one-dimensional infiltration analysis and slope stability analysis were conducted by using the data on the SWCC of weathered granite soil widely distributed in Korea. The applicability of each estimation model is discussed through review of the analysis results.

Framework on Soil Quality Indicator Selection and Assessment for the Sustainable Soil Management (지속가능한 토양환경 관리를 위한 토양질 지표의 선정과 평가체계)

  • Ok, Yong-Sik;Yang, Jae-E.;Park, Yong-Ha;Jung, Yeong-Sang;Yoo, Kyung-Yoal;Park, Chol-Soo
    • Journal of Environmental Policy
    • /
    • v.4 no.1
    • /
    • pp.93-111
    • /
    • 2005
  • Defining soil quality in scopes and applications is one of the prerequisite for the sustainable management of soil environment to orient researches, strategies and policies. However, definition of soil quality is controversial depending upon a viewpoint of soil science or soil environment. Soil quality can be, irrespective of the disciplines, defined as the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality and promote plant and animal health. Common to all of the soil quality concepts can be summarized as the capacity of soil to function effectively at present and in the future. The OECD includes soil quality as one of the agri-environment indicators. This article intends to i) summarize the current soil quality research, and ii) provide information on protocol of soil quality assessment. A framework for soil quality was divided into three steps: indicator selection as minimum data set (MDS), scoring of the selected indicators, and integration of scores into soil quality index. Korean government suggested possible physical and chemical indicators such as bulk density and organic matter for paddy and upland soils to OECD. The framework of soil quality assessment is not yet implemented in Korea. Countries such as USA, Canada and New Zealand have constructed the framework on soil quality assessment and developed a user-friendly version of soil quality assessment tools to evaluate the integrated effects of various soil management practices. The protocol provided in this review might help policymakers, scientists, and administrators improve awareness about soil quality and understand the way of soil environment management.

  • PDF

A preliminary assessment of high-spatial-resolution satellite rainfall estimation from SAR Sentinel-1 over the central region of South Korea (한반도 중부지역에서의 SAR Sentinel-1 위성강우량 추정에 관한 예비평가)

  • Nguyen, Hoang Hai;Jung, Woosung;Lee, Dalgeun;Shin, Daeyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.393-404
    • /
    • 2022
  • Reliable terrestrial rainfall observations from satellites at finer spatial resolution are essential for urban hydrological and microscale agricultural demands. Although various traditional "top-down" approach-based satellite rainfall products were widely used, they are limited in spatial resolution. This study aims to assess the potential of a novel "bottom-up" approach for rainfall estimation, the parameterized SM2RAIN model, applied to the C-band SAR Sentinel-1 satellite data (SM2RAIN-S1), to generate high-spatial-resolution terrestrial rainfall estimates (0.01° grid/6-day) over Central South Korea. Its performance was evaluated for both spatial and temporal variability using the respective rainfall data from a conventional reanalysis product and rain gauge network for a 1-year period over two different sub-regions in Central South Korea-the mixed forest-dominated, middle sub-region and cropland-dominated, west coast sub-region. Evaluation results indicated that the SM2RAIN-S1 product can capture general rainfall patterns in Central South Korea, and hold potential for high-spatial-resolution rainfall measurement over the local scale with different land covers, while less biased rainfall estimates against rain gauge observations were provided. Moreover, the SM2RAIN-S1 rainfall product was better in mixed forests considering the Pearson's correlation coefficient (R = 0.69), implying the suitability of 6-day SM2RAIN-S1 data in capturing the temporal dynamics of soil moisture and rainfall in mixed forests. However, in terms of RMSE and Bias, better performance was obtained with the SM2RAIN-S1 rainfall product over croplands rather than mixed forests, indicating that larger errors induced by high evapotranspiration losses (especially in mixed forests) need to be included in further improvement of the SM2RAIN.