• Title/Summary/Keyword: 수분계

Search Result 593, Processing Time 0.029 seconds

Processing and Property of Olive Flounder Paralichthys olivaceus Terrine (넙치(Paralichthys olivaceus) Terrine 제품의 제조 및 품질특성)

  • YOON, Moon-Joo;LEE, Jae-Dong;PARK, Si-Young;KWON, Soon-Jae;PARK, Jin-Hyo;KANG, Kyung-Hun;CHOI, Jong-Duck;JOO, Jong-Chan;KIM, Jeong-Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.1084-1091
    • /
    • 2015
  • Aquaculture of olive flounder started in the middle of 1980's and now farming has been taken place in many places along the coastal line in Korea. The taste of olive flounder has a good chewy texture because of high collagen content, low fat content, so it is popular for sliced raw fish. Olive flounder is popular among Koreans but the consumption pattern is uniformly so as to be used as sliced raw fish but not other ways. So, now there needs to develop high valued-processed food using olive flounder. This study was set to investigate the processing of terrine by using olive flounder, in which terrine is French style meat loaf that is well favored around the world. In this study, terrine was prepared by chopping olive flounder meat with 39 g egg white and 10 mL fresh cream (per 50 g fillet) and then seasoned with 5 mL lemon juice, 5 mL brandy, 0.05 g salt and 0.05 g pepper. The 25 g of dough was placed on a vinyl wrap, put with 2 g cheese, and layered an another 25 g dough, and then rolled up and wrapped by aluminium foil. Two different cooking methods were used for terrine processing in this study. Terrine-1 was cooked by vacuum sealed in polyethylene film ($20{\times}30{\times}0.05mm$) after boiling for 5 min and stored at $-20^{\circ}C$ for 7 days. Terrine-2 was prepared by vacuum sealed in polyethylene film ($20{\times}30{\times}0.05mm$) and stored at $-20^{\circ}C$ for 7 days. After 7 days, Terrine-1 was thawed and then heated up in microwave for 2 min (Sample-1), while Terrine-2 was thawed and then boiled in water for 5 min (Sample-2). Viable bacterial count, chemical composition, pH, salinity, hardness, TBA, free amino acid content, and sensory evaluation were measured for both Sample-1 and Sample-2. Especially, the scores of sensory evaluation of Sample-2 is slightly higher than that of Sample-1. On the other hand, there were no significant differences on color, odor, taste, texture, and overall acceptance between Sample-1 and Sample-2.

Assessment of Microbial Contamination and Nutrition of Kwangchun Shrimp Jeotgal (Salt Fermented Shrimp) (광천 토굴새우젓의 미생물 오염도 및 영양 평가)

  • Kim, Ae-Jung;Park, Shin-Young;Choi, Jin-Won;Park, Sang-Hyun;Ha, Sang-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.121-127
    • /
    • 2006
  • Microbial and nutritional characteristics of Kwangchun shrimp Jeotgal (salt-fermented shrimp) were assessed. Total mesophilic bacteria, coliforms, and S. aureus counts in Kwangchun shrimp Jeotgal were 3.48-5.42, 2.22-2.95, and 0.58-2.51 $log_{10}CFU/g$, respectively. Yeast and mold were detected only in Ohjeot (1.99 $log_{10}CFU/g$) and Yookjeot (1.47 $log_{10}CFU/g$). B. cereus, L. monocytogenes, Vibrio spp. and E. coli were not detected in Kwangchun shrimp Jeotgal, which contained abundant macrominerals (Ca, Mg, Na, K), with Na showing highest content. Palmitic acid content was higher than those of other saturated fatty acids. Eicosapentaenoic acid and docosahexaenoic acid contents were higher than those of other poly unsaturated fatty acids. Results showed Kwangchun shrimp Jeotgal is safe microbiologically with abundant nutritional components.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.

Distributional Characteristics and Evaluation of the Population Sustainability, Factors Related to Vulnerability for a Polygonatum stenophyllum Maxim. (층층둥굴레(Polygonatum stenophyllum Maxim.)의 분포특성과 개체군의 위협요인 및 지속가능성 평가)

  • Kim, Young-Chul;Chae, Hyun-Hee;Ahn, Won-Gyeong;Lee, Kyu-Song;Nam, Gi-Heum;Kwak, Myoung-Hai
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.303-320
    • /
    • 2019
  • Plants interact with various biotic and abiotic environmental factors. It requires much information to understand the traits of a plant species. A shortage of information would restrict the assessment, especially in the evaluation of what kind of factors influence a plant species to face extinction. Polygonatum stenophyllum Maxim. is one of the northern plants of which Korea is the southern distribution edge. The Korean Ministry of Environment had designated it to be the endangered species until December 2015. Although it is comparatively widespread, and a large population has recently been reported, it is assessed to be vulnerable due to the low population genetic diversity. This study evaluated the current distribution of Polygonatum stenophyllum Maxim. We investigated the vegetational environment, population structures, phenology, soil environment, and self-incompatibility based on the results. Lastly, we evaluated the current threats observed in the habitats. The habitats tended to be located in the areas where the masses at the edge of the stream accumulated except for those that were located on slopes of some mountainous areas. Most of them showed a stable population structure and had re-established or recruited seedlings. Polygonatum stenophyllum Maxim. had the difference in time when the shoots appeared above the ground depending on the depth of the rhizome located in the underground. In particular, the seedlings and juveniles had their rhizome located shallow in the soil. Visits by pollinator insects and success in pollination were crucial factors for bearing of fruits by Polygonatum stenophyllum Maxim. The threats observed in the habitat of Polygonatum stenophyllum Maxim. included the expansion of cultivated land, construction of new buildings, and construction of river banks and roads. Despite such observed risk factors, it is not likely that there would be rapid population reduction or extinction because of its widespread distribution with the total population of more than 2.7 million individuals and the new populations established by the re-colonization.

Esterification of Indonesia Tropical Crop Oil by Amberlyst-15 and Property Analysis of Biodiesel (인도네시아 열대작물 오일의 Amberlyst-15 촉매 에스테르화 반응 및 바이오디젤 물성 분석)

  • Lee, Kyoung-Ho;Lim, Riky;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.324-332
    • /
    • 2019
  • Most countries including Korea and Indonesia have strong policy for implementing biofuels like biodiesel. Shortage of the oil feedstock is the main barrier for increasing the supply of biodiesel fuel. In this study, in order to improve the stability of feedstock supply and lower the biodiesel production cost, the feasibility of biodiesel production using two types of Indonesian tropical crop oils, pressed at different harvesting times, were investigated. R. Trisperma oils, a high productive non-edible feedstocks, were investigated to produce biodiesel by esterification and transesterification because of it's high impurity and free fatty acid contents. the kindly provided oils from Indonesia were required to perform the filtering and water removal process to increase the efficiency of the esterificaton and transesterification reactions. The esterification used heterogeneous acid catalyst, Amberlyst-15. Before the reaction, the acid value of two types oil were 41, 17 mg KOH/g respectively. After the pre-esterification reaction, the acid value of oils were 3.7, 1.8 mg KOH/g respectively, the conversions were about 90%. Free fatty acid content was reduced to below 2%. Afterwards, the transesterification was performed using KOH as the base catalyst for transesterification. The prepared biodiesel showed about 93% of FAME content, and the total glycerol content was 0.43%. It did not meet the quality specification(FAME 96.5% and Total glycerol 0.24%) since the tested oils were identified to have a uncommon fatty acid, generally not found in vegetable oils, ${\alpha}$-eleostearic acid with much contents of 10.7~33.4%. So, it is required to perform the further research on reaction optimization and product purification to meet the fuel quality standards. So if the biodiesel production technology using un-utilized non-edible feedstock oils is successfully developed, stable supply of the feedstock for biodiesel production may be possible in the future.

Sapflux Measurement Database Using Granier's Heat Dissipation Method and Heat Pulse Method (수액류 측정 데이터베이스: 그래니어(Granier) 센서 열손실탐침법(Heat Dissipation Method)과 열파동법(Heat Pulse Method)을 이용한 수액류 측정)

  • Lee, Minsu;Park, Juhan;Cho, Sungsik;Moon, Minkyu;Ryu, Daun;Lee, Hoontaek;Lee, Hojin;Kim, Sookyung;Kim, Taekyung;Byeon, Siyeon;Jeon, Jihyun;Bhusal, Narayan;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.327-339
    • /
    • 2020
  • Transpiration is the movement of water into the atmosphere through leaf stomata of plant, and it accounts for more than half of evapotranspiration from the land surface. The measurements of transpiration could be conducted in various ways including eddy covariance and water balance method etc. However, the transpiration measurements of individual trees are necessary to quantify and compare the water use of each species and individual component within stands. For the measurement of the transpiration by individual tree, the thermometric methods such as heat dissipation and heat pulse methods are widely used. However, it is difficult and labor consuming to maintain the transpiration measurements of individual trees in a wide range area and especially for long-term experiment. Therefore, the sharing of sapflow data through database should be useful to promote the studies on transpiration and water balance for large spatial scale. In this paper, we present sap flow database, which have Granier type sap flux data from 18 Korean pine (Pinus koraiensis) since 2011 and 16 (Quercus aliena) since 2013 in Mt.Taehwa Seoul National University forest and 18 needle fir (Abies holophylla), seven (Quercus serrata), three (Carpinus laxiflora and C. cordata each since 2013 in Gwangneung. In addition, the database includes the sapling transpiration of nine species (Prunus sargentii, Larix kaempferii, Quercus accutisima, Pinus densiflora, Fraxinus rhynchophylla, Chamecypans obtuse, P. koraiensis, Betulla platyphylla, A. holophylla, Pinus thunbergii), which were measured using heat pulse method since 2018. We believe this is the first database to share the sapflux data in Rep. of Korea, and we wish our database to be used by other researchers and contribute a variety of researches in this field.

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

Effects of silage storage period of grass clippings on methane production by anaerobic digestion (잔디 예지물의 혐기소화에서 사일리지 저장기간이 메탄 생산에 미치는 영향)

  • Jin Yeo;Tae-Hee Kim;Chang-Gyu Kim;Seo-Yeong Lee;Young-Man Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.13-28
    • /
    • 2023
  • This study assessed the biochemical methane potential (Bu-P) of three grass species-Poa pratensis (PP), Zoysia japonica (ZJ), and Agrostis stolonifera (AS). Bu-P values were determined as 0.330 Nm3/kg-VSadded for PP, 0.297 Nm3/kg-VSadded for ZJ, and 0.261 Nm3/kg-VSadded for AS. Notably, PP exhibited superior suitability for methane production. The investigation also examined the impact of silage storage duration on PP grass clippings, revealing a 19% decline in Bu-P from an initial value of 0.269 Nm3/kg-VSadded on day 0 to 0.217 Nm3/kg-VSadded on day 180. Throughout the storage period, there were significant increases in neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude protein (CP) contents, rising from 67.59%, 39.68%, and 3.02% on day 0 to 77.12%, 54.65%, and 6.24% on day 180, respectively. These findings highlight the influence of storage duration on the anaerobic digestibility of PP grass clippings. To effectively utilize grass clippings as a renewable resource for methane production, further studies considering factors such as initial moisture content, pretreatment methods, and potential effects of residual pesticides are necessary to optimize anaerobic digestion efficiency for herbaceous biomass.

Analysis of Changes in Pine Forests According to Natural Forest Dynamics Using Time-series NFI Data (시계열 국가산림자원조사 자료 기반 자연적 임분동태 변화에 따른 소나무림의 감소 특성 평가)

  • Eun-Sook Kim;Jong Bin Jung;Sinyoung Park
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.40-50
    • /
    • 2024
  • Pine forests are continuously declining due to competition with broadleaf trees, such as oaks, as a consequence of changes in the natural dynamics of forest ecosystem. This natural decline creates a risk of losing the various benefits pine trees have provided to people in the past. Therefore, it is necessary to prepare future forest management directions by considering the state of pine tree decline in each region. The goal of this study is to understand the characteristics of pine forest changes according to forest dynamics and to predict future regional changes. For this purpose, we evaluated the trend of change in pine forests and extracted various variables(topography, forest stand type, disturbance, and climate) that affect the change, using time-series National Forest Inventory (NFI) data. Also, using selected key variables, a model was developed to predict future changes in pine forests. As a results, it showed that the importance of pine trees in forests across the country has decreased overall over the past 10 years. Also, 75% of the sample points representing pine trees remained unchanged, while the remaining 25% had changed to mixed forests. It was found that these changes mainly occurred in areas with good moisture conditions or disturbance factors inside and outside the forest. In the next 10 years, approximately 14.2% of current pine forests was predicted to convert to mixed forests due to changes in natural forest dynamics. Regionally, the rate of pine forest change was highest in Jeju(42.8%) and Gyeonggi(26.9%) and lowest in Gyeongbuk(8.8%) and Gangwon(13.8%). It was predicted that pine forests would be at a high risk of decline in western areas of the Korean Peninsula, including Gyeonggi, Chungcheong, and Jeonnam. This results can be used to make a management plan for pine forests throughout the country.