• Title/Summary/Keyword: 수문학적 예측

Search Result 383, Processing Time 0.034 seconds

Daily Reservoir Inflow Prediction using Quantitative Precipitation Model (강수진단모형을 이용한 실시간 저수지 일유입량 예측)

  • Kang, Boo-Sik;Kang, Tae-Ho;Oh, Jai-Ho;Kim, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.291-295
    • /
    • 2007
  • 강수진단모형을 이용하여 저수지 이수운영을 위한 실시간 유량예측기법을 개발하였다. 강수진단모형은 현재 기상청 현업에서 수행중인 강우수치예보를 기반으로 상세 지역의 지형 효과에 의한 강수를 예측하는 정량강수예측모형(QPM; Quantitative Precipitation Model)으로서 부경대학교 환경대기과학과에서 개발된 모형이다. QPM은 중규모 예측 모형으로부터 계산된 수평 바람, 고도, 기온, 강우 강도, 그리고 상대습도 등의 예측 자료를 이용하고, 소규모 상세지형 효과를 고려함으로써 중규모 예측 모형에서 생산된 강수량 예측 값을 상세 지역의 지형을 고려한 강수량 예측 값으로 재구성하여 결과적으로 3km 간격의 상세지역 강우산출과 지형에 따른 강수량의 분포 파악이 용이할 뿐만 아니라 계산 효율성을 개선된 모형이다. QPM 검증을 위하여 기상학적 평가와 수문학적 평가를 수행하였다. 호우 사례별 일강수량의 시공간 분포로 부터, QPM을 활용한 시스템에 의한 예측결과가 원시자료 RDAPS 보다 고해상도의 예측 및 지형효과의 반영도가 높았으며, AWS의 관측자료와 비교하여 보다 높은 예측성을 보여 주었다. 대상기간인 2006년 1월 1일부터 6월 20일까지 관측강우는 총 391.5mm 였으며 RQPM은 실적강우에 비하여 119.5mm 정도 과소산정하고 있으나 분위사상과정을 거치게 되면 351.7mm로서 실적강우에 불과 10.2% 못미치고 있다. 이는 고무적인 결과로 볼 수 있으며 현업에서의 활용성이 기대되는 수준이라 볼 수 있다. 강우-유출모의를 위한 QPM신뢰도를 높이기 위하여 분위사상법(Quantile Mapping)을 이용하여 QPM모의에 존재할 수 있는 계통오차에 대한 추가적인 보정을 수행하였다. 수문학적 평가를 위하여는 장기연속유출모형인 SSARR모형을 기반으로 개발된 RRFS(Rainfall-Runoff Forecast System)을 이용하여 2006년 1월${\sim}$9월까지의 용담댐 유입량에 대하여 모의예측결과와 관측유입량 비교를 통한 검증을 수행하였다. 위 기간중 예측유입량의 RMSE(Root Mean Squared Error), COE(Sutcliffe Coefficient of Efficiency), MAE(Mean Absolute Error), $R^2$값은 각각 7.50, 0.68, 2.59, 0.69 값을 보이고 있다. 본 연구에서는 QPM에 의한 예측성의 향상 및 구축된 시스템에 의한 일강수량의 장기예측 가능성을 확인하였고, 향후 시스템을 현업에 활용하기 위해서 생산된 예측자료의 보다 장기적인 검증을 통한 시스템의 안정화가 필요할 것으로 사료된다.

  • PDF

A Study on the relationship of between meteo-hydrological characteristics and malaria - case of korea - (수문 기상학적 환경특성과 말라리아 발생간의 상관관계에 관한 연구 -한반도를 사례로-)

  • Choi, Don-Jeong;Park, Kyung-Won;Suh, Yong-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.457-457
    • /
    • 2012
  • 말라리아는 매개체에 의한 전염병으로써 국내에서는 이미 1970년대에 사라진 것으로 알려져 있다. 하지만 1990년대에 재발생하여 2000년대 초반까지 경기도와 강원도 북부지역에서 환자가 증가하는 양상을 보였다. 사람에게서 발병하는 말라리아는 4종으로 알려져 있으나 우리나라의 경우 이 중 오로지 삼일열 원충감염에 의한 것으로 밝혀졌다(질병관리 본부, 2010). 기후변화는 질병의 발생에 영향을 미칠 수 있는 중요한 요인 중 하나로써 매개체에 의한 질병의 경우 기후요소는 매개체의 번식과 활동에 적지않은 영향을 미친다. 특히 말라리아의 경우 병원균을 가진 개체수와 모기에 물리는 횟수, 감염된 모기의 수, 그 모기에 사람이 물리는 횟수와 관계가 있으나 기온과 강수량, 습도의 변화 등 기후 및 수문학적 요소와도 밀접한 관계를 가지는 것으로 밝혀졌다(Lindsay & Birley, 1996; 박윤형 외, 2006; 신호성, 2011 재인용). 본 연구의 목적은 한반도 기후-수문학적 환경특성 및 변화를 파악하고 지역적 말라리아 발생과의 상관관계를 도출하며 이를 기반으로 하여 말라리아 발생의 변동을 예측하는 것이다. 분석에 사용된 데이터는 말라리아 발생자료의 경우, 질병관리 본부에서 제공하는 2001년 1월~2011년 12월 까지의 약 16000건의 발병자료가 포함 되었고 분석의 시간 단위는 2WEEKS 이며 전국 251개의 시군구에서 발생한 전염병을 합산하였다. 기상자료의 경우 기상청 기후자료 관리 시스템에서 제공하는 동일 기간대의 평균기온, 최고(최저)기온, 강수량, 신적설, 평균 해면기압, 평균 이슬점 온도, 평균 상대습도, 평균풍속, 평균운량, 일조시간 자료를 활용하였다. 본 연구에 사용된 AWS(Automatic Weather Station)자료의 경우 기본적으로 point 형태의 관측자료이고, 분석기간 동안의 개수에서도 차이가 있기 때문에 공간 내삽기법인 kriging을 활용하여 행정구역과 zonal하는 방법으로 재가공 하였다. 지역의 수문학적 특성의 경우 10*10 DEM을 기반으로 ESRI ArcGIS 소프트웨어의 ArcHydro 기능을 이용 하여 유역을 생성하는 방법을 채택하였다. 본 연구에서는 통계적 모형을 기본으로 기후 및 수문 특성과 말라리아 발생간의 상관관계를 분석하였으며 시계열 자료의 특성상 포아송 분포의 Generalized Estimation Equation 과 Generalized Linear Model을 이용한다(Baccini 외, 2008; 신호성, 2011). 또한 말라리아 잠복시간의 지연효과 및 전염병의 계절 영향을 반영하기 위하여 Fourier transform 을 적용 하였다.

  • PDF

Development and Evaluation of Flood Prediction Models Using Artificial Intelligence Techniques (인공지능 기법을 활용한 홍수예측모델 개발 및 평가 - 한강수계 댐을 중심으로 -)

  • Cho, Hemie;Uranchimeg, Sumiya;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.131-131
    • /
    • 2022
  • 기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.

  • PDF

A Study on the Regional Frequency Analysis Using the Artificial Neural Network Method - the Nakdong River Basin (인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 낙동강 유역을 중심으로)

  • Ahn, Hyunjun;Kim, Sunghun;Jung, Jinseok;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.404-404
    • /
    • 2017
  • 이상기후현상으로 인해 극치 수문 사상들이 빈번히 발생함에 따라 상대적으로 높은 재현기간에 해당하는 극치 수문 사상해석에 대한 관심이 높아지고 있다. 그러나 우리나라의 경우 이러한 극치 수문 사상을 추정하기 위한 표본의 수가 부족한 실정이다. 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다는 장점을 가지고 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있다. 지역구분은 지역빈도해석이 지점빈도해석과 구분될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 인공신경망은 인간의 뇌가 학습하는 방식을 모사한 통계적 모델링 기법이다. 즉, 인간의 뇌가 일정한 반복 학습을 통해 어떠한 문제의 해법을 추론하거나 예측, 또는 패턴을 인식하는 일련의 과정을 알고리즘화 하여 목적함수의 해를 찾는 방식이다. 특히, 주어진 자료들로 부터 특징을 추출하고 그 특징을 학습하여 전체 자료의 분류나 군집화를 이루는데 널리 이용되고 있다. 본 연구에서는 낙동강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도해석을 수행하였다.

  • PDF

An Hourly Extreme Rainfall Outlook Using Climate Information (기상인자를 활용한 시단위 극치강우량 전망)

  • Kim, Yong-Tak;Hong, Min;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.14-14
    • /
    • 2018
  • 세계의 여러 국가에서 과거 발생했던 강수의 통계적 특성에서 벗어나는 극치사상이 빈번하게 관측되고 있다. 이와 같은 현상에 가장 큰 영향을 미치고 있는 요인중 하나는 지구온난화이며 실제 산업화 이후 온실가스의 증가와 더불어 극한 기상현상의 발생 빈도가 증가하였다. 현재 예상치 못한 수문사상의 발생으로 인해 수자원관리에 있어서 많은 어려움을 겪고 있으며, 특히 호우사상은 막대한 인명 및 사회적 피해를 야기하고 있다. 우리나라의 경우 계절적 특징으로 여름철에 강수가 집중되는 양상을 보이고 있으며 따라서 여름철 강수량을 예측하여 호우에 대한 대비책을 마련해야한다. 계절강수 예측은 수문, 산림, 식품, 등을 포함한 사회 경제적 파급 효과가 매우 크지만 아직 신뢰성 있는 예측은 어려운 상태이다. 또한, 발생 강도와 빈도가 큰 극한 강우는 주로 짧은 시간에 걸쳐 발생하기 때문에 예측하기가 어렵다. 최근 다양한 분야의 연구에서 AO, NAO, ENSO, PDO등과 같은 외부적 요인이 수문학적 빈도를 변화시킨다고 알려지고 있어 본 연구에서는 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 토대로 외부 기상인자에 의한 변동성을 고려할 수 있는 계절강수량 예측모형을 구축한 후 산정된 결과를 입력 자료로 하여 극치강수량을 추정할 수 있는 비정상성 Four - Parameter (4P)-Beta분포를 이용한 알고리즘을 개발하여 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 모형으로 확장하여 이를 통해 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용하고자 하였다.

  • PDF

Applicability of WRF-HYDRO model for real flood event of Mangyeong-river watershed (만경강 유역의 실제 홍수 사상을 이용한 WRF-HYDRO 모형의 적용성 검토)

  • So, Byung-Jin;Ryou, Min-Suk;Ban, Woo-Sik;Lee, Joo Heon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.204-204
    • /
    • 2017
  • WRF 모형은 실제 자연에서 나타나는 대기 현상의 원인을 물리적 동적 방정식들의 항으로 표현한 수치예보모형으로 전세계의 상업적 비상업적인 수치예보모형 안에서 성능이 뛰어나다고 평가되어지고 있다. WRF 모형은 오픈소스 기반의 비상업적 모형으로 사용 및 수정이 자유로운 특징이 있으며, 위성 및 레이더와 같은 고도화된 다양한 기상관측자료를 입력자료로 활용할 수 있는 장점이 있다. WRF-HYDRO 모형은 WRF 모형이 갖는 공간적인 저해상도 문제를 해결할 수 있는 고해상도의 격자를 구축할 수 있으며 유출량과 수문 변량을 추정할 수 있는 추적 모형을 추가하여 수문학적 예측 능력을 향상하고자 개발되었다. 기존 모형과의 차별성으로는 기상인자로 인하여 도출된 지표면의 수문인자들이 시간의 변동에 따라서 다음 시간의 기상인자에 영향을 미치는 피드백 구조로 구성되어 기상과 지표면이 양방향으로 연결되는 특징이 있다. 기존 모형에 비하여 향상된 구조적인 특징은 수문학적 순환과정을 자연스럽게 재현함으로서 신뢰성 있는 결과를 도출할 수 있을 것으로 판단된다. 본 연구에서는 만경강 유역의 실제 유출 사상에 대하여 WRF-HYDRO 모형을 적용하고, 홍수통제소 관할 만경강 유역내 수문 관측소 자료와의 비교를 통해 WRF-HYDRO 모형의 적용성을 검토하였다. 수문 관측소를 통한 검토 결과를 기반으로 WRF-HYDRO 모형에서 제시된 수문-기상 정보를 통하여 만경강 유역의 홍수 사상의 발생 과정에 대한 추적 및 미계측 변량의 추정에 유용하게 사용할 수 있을 것으로 판단된다.

  • PDF

Tributary Flood Forecasting Using Statistical Analysis Method (통계적 모형을 이용한 지천 홍수예측)

  • Sung, Ji-Youn;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1524-1527
    • /
    • 2009
  • 본 연구는 주요지천 홍수예측에 적용된 통계적 모형을 개선하여 예측 결과의 정확성 향상을 도모하는 데 목적이 있다. 중랑천, 탄천, 왕숙천 등 한강수계 주요 지천은 홍수예보 지점으로 유역면적이 작고 도달 시간이 짧아 기존의 대하천 홍수예보에 이용되고 있는 수문학적 홍수예측 모형을 적용하기에는 한계가 있다. 이러한 문제점을 해결하기 위해 주요 지천 홍수예측에 통계적 모형인 다중선형 회귀모형을 이용하는 방법이 제안되어 활용되었다. 본 연구에서는 지천홍수예측에 기 적용된 다중선형 회귀 모형의 다중공선성 문제를 해결하기 위해 독립변수를 조정하고, 10분 단위 관측 자료를 활용한 예측 결과를 얻기 위해 매개변수를 재산정하였다. 그 결과 기존 모형에 비해 적은 수의 독립변수와 재 산정된 매개변수를 이용한 통계적 모형으로 예측 수위의 오차를 줄일 수 있었다.

  • PDF

Application Examples of Daecheong Dam for Efficient Water Management Based on Integrated Water Management (통합물관리 기반 효율적 물관리를 위한 대청댐 실무적용 사례)

  • Kang, Kwon-Su;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.85-85
    • /
    • 2017
  • 효율적 물관리란 거대한 물순환 과정에서 인간이 편안한 삶을 사는데 필요한 물의 이용효율을 극대화하는 것이다. 과거의 물관리는 이원화된 수량과 수질관리, 수량중심에서는 용수공급과 홍수조절이 주요한 관심사였다. 현재는 과거의 물관리에 친수와 환경을 더한 복잡한 분야로 확대되고 있다. 통합물관리란 물을 최적으로 관리하기 위해 물관리 이해당사자간의 소통과 물 기술의 고도화를 기반으로 기존에 분산된 물관리 구성요소들(시설 정보, 수량 수질 등)을 권역적으로 관리하는 것을 말한다. 본 연구에서는 대청댐 방류에 따른 금강 하류부의 홍수추적을 위해 수행한 댐하류 소유역별 강우량 빈도분석 과정, 용담댐 방류를 고려한 대청댐 홍수도달시간 검토, Poincare Section과 신경망기법을 이용한 수문자료 예측, 추계학적 다변량 해석과 다변량 신경망해석에 의한 대청댐 유입량 산정과정, 보조여수로 건설에 따른 주여수로와 보조여수로간의 연계운영방안, 단계(관심, 주의, 경계, 심각)를 고려한 대청댐 확보수위 산정, 저수지 중장기 운영계획 수립과 댐 운영 기준수위를 결정하기 위해 누가차분방식으로 적용되는 갈수기 유입량 빈도분석에 대한 실무적용 사례를 소개하고자 한다. 강우량 빈도분석 과정은 L-모멘트방법(Hosking과 Wallis, 1993)을 적용하였고, 홍수도달시간 검토는 평균유속, 하류 수위상승 기점 영향검토, 수리학적 모형(FLDWAV, Progressive lag method 등)을 활용하였다. 카오스 이론을 도입하여 대청댐 수문자료의 상관성 검토 및 추계학적 모형을 이용한 모의발생을 유도하여 수문자료 예측을 시행하였다. 추계학적 모형과 신경망모형 연구의 대상은 대청댐으로, 시계열 자료는 댐의 월강우량, 월유입량, 최고기온, 평균기온, 최소기온, 습도, 증발량 등의 자료를 기반으로 하였다. 적용기간은 1981~2009년의 자료를 이용하여 2010년 1월부터 12월까지 12개월 동안의 월유입량을 예측하였다. 수문자료 해석의 기본이 되는 약 30년간의 자료를 이용하여 분석을 실시하였다. 대청댐의 유입량 예측을 위해 적용된 모형으로는 추계학적 모형인 ARMA모형, TF모형, TFN 모형 등이 적용되었고, 또한 신경망 모형의 종류인 다층 퍼셉트론, PCA모형 등을 활용하여 실측치와 가장 가깝게 근사화시키는 방법론을 찾고자 하였다. 또한, 기존여수로와 보조여수로 연계운영을 위해 3차원 수치해석을 통한 댐하류 안정성 검토 및 확보수위 산정을 통해 단계(관심, 주의, 경계, 심각)별로 대처가 가능한 수위를 산정하였다.

  • PDF

A Study on the Analysis of the Relationship between Sea Surface Temperature and Monthly Rainfall (해수면온도와 우리나라 월강우량과의 관계분석에 관한 연구)

  • Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.471-482
    • /
    • 2010
  • Rainfall events in the hydrologic circulation are closely related with various meteorological factors. Therefore, in this research, correlation relationship was analyzed between sea surface temperature of typical meteorological factor and monthly rainfall on Korean peninsula. The cluster analysis was performed monthly average rainfall data, longitude and latitude observed by rainfall observatory in Korea. Results from cluster analysis using monthly rainfall data in South Korea were divided into 4 regions. The principal components of monthly rainfall data were extracted from rainfall stations separated cluster regions. A correlation analysis was performed with extracted principal components and sea surface temperatures. At the results of correlation analysis, positive correlation coefficients were larger than negative correlation coefficients. In addition, The 3 month of principal components on monthly rainfall predicted by locally weighted polynomial regression using observed data of sea surface temperature where biggest correlation coefficients have. The result of forecasting through the locally weighted polynomial regression was revealed differences in accuracy. But, this methods in the research can be analyzed for forecasting about monthly rainfall data. Therefore, continuous research need through hydrological meteorological factors like a sea surface temperature about forecasting of the rainfall events.