• Title/Summary/Keyword: 수문순환 모의

Search Result 182, Processing Time 0.019 seconds

A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge (시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용)

  • Yoo, Hyungju;Lee, Seung Oh;Choi, Seohye;Park, Moonhyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, the flood damage on riverside social infrastructures was extended so that there has been a threat of overflow. Therefore, a rapid prediction of potential flooding in riverside social infrastructure is necessary for administrators. However, most current flood forecasting models including hydraulic model have limitations which are the high accuracy of numerical results but longer simulation time. To alleviate such limitation, data driven models using artificial neural network have been widely used. However, there is a limitation that the existing models can not consider the time-series parameters. In this study the water surface elevation of the Hangang River bridge was predicted using the NARX model considering the time-series parameter. And the results of the ANN and RNN models are compared with the NARX model to determine the suitability of NARX model. Using the 10-year hydrological data from 2009 to 2018, 70% of the hydrological data were used for learning and 15% was used for testing and evaluation respectively. As a result of predicting the water surface elevation after 3 hours from the Hangang River bridge in 2018, the ANN, RNN and NARX models for RMSE were 0.20 m, 0.11 m, and 0.09 m, respectively, and 0.12 m, 0.06 m, and 0.05 m for MAE, and 1.56 m, 0.55 m and 0.10 m for peak errors respectively. By analyzing the error of the prediction results considering the time-series parameters, the NARX model is most suitable for predicting water surface elevation. This is because the NARX model can learn the trend of the time series data and also can derive the accurate prediction value even in the high water surface elevation prediction by using the hyperbolic tangent and Rectified Linear Unit function as an activation function. However, the NARX model has a limit to generate a vanishing gradient as the sequence length becomes longer. In the future, the accuracy of the water surface elevation prediction will be examined by using the LSTM model.

Analysis of the Impact of Satellite Remote Sensing Information on the Prediction Performance of Ungauged Basin Stream Flow Using Data-driven Models (인공위성 원격 탐사 정보가 자료 기반 모형의 미계측 유역 하천유출 예측성능에 미치는 영향 분석)

  • Seo, Jiyu;Jung, Haeun;Won, Jeongeun;Choi, Sijung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.147-159
    • /
    • 2024
  • Lack of streamflow observations makes model calibration difficult and limits model performance improvement. Satellite-based remote sensing products offer a new alternative as they can be actively utilized to obtain hydrological data. Recently, several studies have shown that artificial intelligence-based solutions are more appropriate than traditional conceptual and physical models. In this study, a data-driven approach combining various recurrent neural networks and decision tree-based algorithms is proposed, and the utilization of satellite remote sensing information for AI training is investigated. The satellite imagery used in this study is from MODIS and SMAP. The proposed approach is validated using publicly available data from 25 watersheds. Inspired by the traditional regionalization approach, a strategy is adopted to learn one data-driven model by integrating data from all basins, and the potential of the proposed approach is evaluated by using a leave-one-out cross-validation regionalization setting to predict streamflow from different basins with one model. The GRU + Light GBM model was found to be a suitable model combination for target basins and showed good streamflow prediction performance in ungauged basins (The average model efficiency coefficient for predicting daily streamflow in 25 ungauged basins is 0.7187) except for the period when streamflow is very small. The influence of satellite remote sensing information was found to be up to 10%, with the additional application of satellite information having a greater impact on streamflow prediction during low or dry seasons than during wet or normal seasons.