• Title/Summary/Keyword: 수목 탐지

Search Result 19, Processing Time 0.025 seconds

Development of 3D Viewer for Tree Cavity using Pulse Ultrasound (펄스 초음파를 이용한 수목 공동부 3D 구현 프로그램 제작)

  • Son, Jungmin;Kang, Sunghoon;Moon, Jongwook;Yoon, Seokkyu;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.265-271
    • /
    • 2021
  • The pattern of the tree's internal swelling depends on many causes. Since it is difficult to detect these various causes of swelling with a general method, if the state of swelling for a long time cannot be confirmed, serious damage to the trees may occur due to enlargement of the swelling area. In the method of acquiring a tree tomography image, an impulse passing through the tree is generated by tapping the sensor with a rubber mallet, and the moving speed is recorded. In this paper, to measure cracks, cavities, and swelling due to physical damage, we developed a 3D viewer that can know the internal state of a tree using a tree cross-section image acquired from Arbotom to determine the degree of swelling inside the tree. Based on this, we tried to present data that can be referred to when surgical operation of trees is required. In order to acquire a tomographic image of a tree, 6 sensors were attached to the three Yangpala and Maple trees, and a 1 m-long tree was measured using the Arbotom program, and a 3D image was implemented through the 3D Viewer created using MATLAB. In addition to simply acquiring images, the cross-sectional length and volume of the tree were measured. In the actually produced 3D Viewer, the length of the part where the swelling of the maple tree occurred was 33.12 cm, and the swelling of the yangpala tree was measured as 21.41 cm. The volume of the maple tree was measured to be 78.832 ㎤. As a result of comparing the cross-sectional image of the Arbotom and the 3D image, the same result as the real aspect of the tree was obtained, so it can be judged that the reliability of the manufactured software is also secured, and data to be applied to the surgical tree operation through the created Viewer is provided. It is believed that the damage will be minimized.

Detection of Forest Areas using Airborne LIDAR Data (항공 라이다데이터를 이용한 산림영역 탐지)

  • Hwang, Se-Ran;Kim, Seong-Joon;Lee, Im-Pyeong
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.23-32
    • /
    • 2010
  • LIDAR data are useful for forest applications such as bare-earth DEM generation for forest areas, and estimation of tree height and forest biomass. As a core preprocessing procedure for most forest applications, this study attempts to develop an efficient method to detect forest areas from LIDAR data. First, we suggest three perceptual cues based on multiple return characteristics, height deviation and spatial distribution, being expected as reliable perceptual cues for forest area detection from LIDAR data. We then classify the potential forest areas based on the individual cue and refine them with a bi-morphological process to eliminate falsely detected areas and smoothing the boundaries. The final refined forest areas have been compared with the reference data manually generated with an aerial image. All the methods based on three types of cues show the accuracy of more than 90%. Particularly, the method based on multiple returns is slightly better than other two cues in terms of the simplicity and accuracy. Also, it is shown that the combination of the individual results from each cue can enhance the classification accuracy.

Analysis on Characteristics of Spectral Library to River Floating Debris (하천 부유쓰레기에 대한 분광라이브러리 특성 분석)

  • Lee, Jun-Ho;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.623-632
    • /
    • 2018
  • The object of this study is the effective utilizations of river environment management technology in the area of river reservoir water by using the technique to detect locations, and to develop algorithms on floating debris. In the floating debris detection areas(The section between the stanks of Dalsung and Gangjung-Goryeong), spectral reflections were measured on floating debris around the river: vegetation(grassland, trees), artifact(concrete, structure etc.), stream water(fresh water, turbid water, algal bloom), and simultaneously characteristics of spectral library were analyzed to river floating debris, respectively.

LIDAR 데이터의 스캔라인을 이용한 필터링

  • Lee, Jeong-Ho;Choi, Jae-Wan;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.293-298
    • /
    • 2005
  • LIDAR의 표고점 데이터는 건물, 수목 등의 개체를 구성하는 비지면점과 순수한 지표면을 나타내는 지면점들이 섞여있기 때문에 이들을 분리하는 과정이 필요하다. 지금까지 연구된 방법들은 몇 가지 입력 요소가 필요하여 완전 자동화를 이루지는 못하고 있으며, 다양한 크기의 개체를 동시에 자동으로 찾아내기 어렵고 경사진 지형에 대해서는 적용하기 어려운 문제점을 가지고 있다. 이에 본 논문에서는 원 데이터의 동일 스캔 라인 상에 존재하는 이웃 점들 간의 경사를 이용하여 입력 요소를 최소화하여 개체를 추출하고자 한다. 이웃하는 두 점플 간의 경사를 이용하여 비지면점을 탐지하여 이웃하는 지면점의 높이 값으로 대체하며 갱신된 값을 바로 다음 연산에 반영시킴으로써 윈도우를 사용하거나 그룹화 할 필요가 없다. 또한 갱신된 값을 전파시키기 때문에 복잡한 지붕을 가지는 건물도 추출할 수가 있다. 이와 같은 연산을 두 방향에 대하여 수행하여 경사진 지형에 대하여 적용할 수 있도록 하였으며 천안과 마산지역에 대하여 테스트를 수행하였다.

  • PDF

A Comparative Study of Image Classification Method to Detect Water Body Based on UAS (UAS 기반의 수체탐지를 위한 영상분류기법 비교연구)

  • LEE, Geun-Sang;KIM, Seok-Gu;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.113-127
    • /
    • 2015
  • Recently, there has been a growing interest in UAS(Unmanned Aerial System), and it is required to develop techniques to effectively detect water body from the recorded images in order to implement flood monitoring using UAS. This study used a UAS with RGB and NIR+RG bands to achieve images, and applied supervised classification method to evaluate the accuracy of water body detection. Firstly, the result for accuracy in water body image classification by RGB images showed high Kappa coefficients of 0.791 and 0.783 for the artificial neural network and minimum distance method respectively, and the maximum likelihood method showed the lowest, 0.561. Moreover, in the evaluation of accuracy in water body image classification by NIR+RG images, the magalanobis and minimum distance method showed high values of 0.869 and 0.830 respectively, and in the artificial neural network method, it was very low as 0.779. Especially, RGB band revealed errors to classify trees or grasslands of Songsan amusement park as water body, but NIR+RG presented noticeable improvement in this matter. Therefore, it was concluded that images with NIR+RG band, compared those with RGB band, are more effective for detection of water body when the mahalanobis and minimum distance method were applied.

Detection of Forest Ecosystem Disturbance Using Satellite Images and ISODATA (위성영상과 자기조직화 분류기법을 이용한 산림생태계교란 탐지: 우박 피해지와 매미나방 피해지의 사례연구)

  • Kim, Daesun;Kim, Eun-Sook;Lim, Jong-Hwan;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.835-846
    • /
    • 2020
  • Recent severe climate changes and extreme weather events have caused the uncommon types of forest ecosystem disturbances such as hails and gypsy moths. This paper describes the analysis of the forest ecosystem disturbances using ISODATA (Iterative Self-organizing Data Analysis Technique Algorithm) with the RapidEye and Sentinel-2 images, regarding the cases of the hail damages in Hwasun in 2017 and the gypsy moth damages in the Chiak Mountain in 2020. In the case of hail damages, the comparison of the June image of this study and the July field survey of the previous study showed that the damage severity increased from June to July as the drought overlapped after the trees were injured by the hails. In the case of gypsy moths, significant leaf damages were found from the image of June, and the damages were mainly distributed at the low-altitude slope near Wonju City. We made sure that satellite remote sensing is a very effective method to detect various and unusual forest ecosystem disturbances caused by climate change. Also, it is expected that the Korean Medium Satellite for Agriculture and Forestry scheduled to launch in 2024 can be actively utilized to monitor such forest ecosystem disturbances.

A Method of DTM Generation from KOMPSAT-3A Stereo Images using Low-resolution Terrain Data (저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법)

  • Ahn, Heeran;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.715-726
    • /
    • 2019
  • With the increasing prevalence of high-resolution satellite images, the need for technology to generate accurate 3D information from the satellite images is emphasized. In order to create a digital terrain model (DTM) that is widely used in applications such as change detection and object extraction, it is necessary to extract trees, buildings, etc. that exist in the digital surface model (DSM) and estimate the height of the ground. This paper presents a method for automatically generating DTM from DSM extracted from KOMPSAT-3A stereo images. The technique was developed to detect the non-ground area and estimate the height value of the ground by using the previously constructed low-resolution topographic data. The average vertical accuracy of DTMs generated in the four experimental sites with various topographical characteristics, such as mountainous terrain, densely built area, flat topography, and complex terrain was about 5.8 meters. The proposed technique would be useful to produce high-quality DTMs that represent precise features of the bare-earth's surface.

Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches (Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지)

  • Sim, Seongmun;Kim, Woohyeok;Lee, Jaese;Kang, Yoojin;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1109-1123
    • /
    • 2020
  • In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.