• Title/Summary/Keyword: 수력 손실

Search Result 48, Processing Time 0.021 seconds

The Study of Absorption and Hydraulic Character in Packing Tower (충전탑에서 흡수와 수력학적 특성에 관한 연구)

  • 김석택
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.4-13
    • /
    • 2000
  • 산업공정에서 배출되는 대기오염물질 및 유독성가스를 제거하기 위한 방법에는 여러 가지가 적용되고 있으나, 본 연구에서는 충전탑을 이용한 흡수원리로써 오염물질을 처리하는데 후력학적 특성에 대해서 연구하였다. 즉 환경보호와 화학공업에서 에너지 절약 측면에 충전탑의 사용이 증가되고 있으며, 충전물의 재료로는 플라스틱, 금속 및 세라믹 등으로 제작되며 종류로는 VSP-ring, Hiflow-ring, Hackette, Top-packing, Envi-pac 등이 있고 사용범위는 정류와 증류, 흡수 및 탈착과 액체와 액체의 추출공정 등에 효율적으로 사용되고 있다. 산업현장에서는 과거에 주로 사용되어온 Intalox-saddle, Rasching-ring, Pall-ring 등의 재래적 충전물은 압력손실과 물질전달, 에너지 절약 및 효율성이 좋은 격자형 충전물의 개발로 인하여 점점 사용이 감소되고 있는 추세이며, 최근에는 합성수지로 제조된 충전물 NSW-ring, Hiflow-ring, Envi-pac 등은 실험 결과에 의해서 재래적인 충전물 Raschig-ring과 Pall-ring보다 높은 상대적인 공간체적과 충전높이에 따른 낮은 압력손실과 함께 높은 부하 한계치에 대하여 효율적이고 가벼운 분리작용에 의한 수력학적 특성이 증명되어졌다. 격자형 충전물이 산업에 적용되기 위해서는 압력손실과 액체함량, 부하 한계치 가스상 또는 액상 물질전달의 특성을 규명하는 것이 중요하다. 따라서 본 연구에서는 가수와 액체의 역류흐름에 의한 수력학적 특성과 물질전달 실험결과를 나타내었다.

  • PDF

Hydraulic Characteristics of Branching and Merging of Channels in Regenerative Cooling Passage in Liquid Rocket Combustors (채널의 분기 및 병합이 있는 액체로켓 연소기 재생냉각 유로에서의 수력학적 특성)

  • Kim, Hong-Jip;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1087-1093
    • /
    • 2008
  • Regenerative cooling passage to guarantee the thermal survivability in high performance rocket engine combustors could have complex configurations of the branching/merging of channels and flow turning, etc. By applying the classical hydraulic coefficients which can be found in the literature according to the flow conditions, hydraulic characteristics in regenerative cooling passages can be obtained effectively through dividing the pressure loss into friction loss and local resistance loss. Satisfactory agreement has been obtained by comparing the present results with experimental measurement of water flow test. In addition, the present results were in good agreement with CFD results when the actual coolant, kerosene was used. Therefore, the application of the present method is expected to be useful to design regeneratively cooled combustors.

Determination of the Optimal Contract Amount of the Hydropower Energy Considering the Reliabilities of Reservoir Inflows (저수지(貯水池) 유입량(流入量)의 신뢰도(信賴度)를 고려한 최적(最適) 계약전력량(契約電力量)의 결정(決定))

  • Kwon, Oh Hun;Yoo, Ju Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.141-149
    • /
    • 1993
  • Production of hydro-energy is random in its output amount due to the characteristics of the reservoir inflows. Therefore, it is necessary to provide the rationality in determining the amount of energy for a supply contract. This study presents a methodology for determining reasonably reliable amount of the energy supply considering the energy sale-incomes associated with the penalties which are subject to inflow-reliabilities. The objective function consists of the returns of energy sales and the risk-loss function to reflect statistically relevant risks. A range of the coefficient of the risk-loss function was figured out by its sensitivity analysis. The risk-loss herein means the penalty which should be paid by the energy supplier in case that the level of the energy supply is behind the contracted amount. And the reliability of reservoir inflow is defined by the exceedance probability of the inflow. The log-normal distribution was accepted as the probability density function of monthly inflows on the level of significance at 5%. Golden-ratio searching was applied to identify the optimal reliability and Incremental Dynamic Programming was used to maximize generation of the hydro-power energy in reservoir operation. The algorithm was the applied to the Daechung multi-purpose reservoir and hydro-power plant system in order to verify its usefulness.

  • PDF

A Numerical Study on Improving the Thermal Hydraulic Performance of Printed Circuit Heat Exchanger Using the Supercritical Carbon Dioxide (초임계 이산화탄소를 작동유체로 한 PCHE의 열수력 성능 향상을 위한 수치해석적 연구)

  • Park, Bo Guen;Kim, Dae Hyun;Chung, Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.779-786
    • /
    • 2015
  • The objective of this study is to propose a new channel shape that improves thermal-hydraulic performance. The existing Zigzag channel has high pressure loss due to flow separation and reverse flow. To improve this disadvantage, partial straight channel is inserted into bended points. Also, the effects of straight channel's length change on heat transfer and pressure loss are analyzed. Thermal-hydraulic performance of the new shape and existing Zigzag channel are quantitatively compared in terms of Goodness Factor. Mass flow rate was changed from $1.41{\times}10^{-4}$ to $2.48{\times}10^{-4}kg/s$. The average volume goodness factor of 1mm straight channel shape was increased by 25% compared to the Zigzag channel.

전력기술.정보 - 스마트그리드의 기본 구성요소와 신재생에너지원의 연계운전 알고리즘 체계

  • Hwang, U-Hyeon
    • Electric Engineers Magazine
    • /
    • s.337
    • /
    • pp.21-24
    • /
    • 2010
  • 경제발달로 산업화가 가속화 되면서 대규모 공업단지나 빌딩의 증가로 전력수요가 급격히 늘어남에 따라 더 많은 발전이 필요하게 되었다. 화력발전은 건설기간이 원자력이나 수력에 비해 짧고 운영이 용이한 반면 이산화탄소 배출이 훨씬 많아 지구온난화와 환경문제의 주요인으로 지적되고 있다. 또한 발전은 입지조건상 바닷가부근에서 생산하여 송전선로를 통해 공급하므로 송배전 전력손실이 높아진다. 따라서 화력발전의 비율을 줄이고 전력망의 손실을 감소시키기 위해서는 신재생에너지원과의 연계운전이 중요하다. 이렇게 다양한 전력공급원과 소비의 최적 운전을 위해서는 스마트 그리드의 구성과 운영 기술의 도입이 필요하다. 본 논문에서는 스마트그리드의 기본 구성요소와 신재생에너지원과의 연계운전에 필요한 알고리즘 체계를 제시하고자 한다.

  • PDF

A Study on the Hydraulic Characteristics of Rashig Super-Ring Random Packing in a Counter-Current Packed Tower (역류식 충전탑에서 Raschig Super-ring Random Packing의 수력학적 특성에 대한 연구)

  • Kang, Sung Jin;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.102-108
    • /
    • 2020
  • In recent years, packed column has been widely used in separation processes, such as absorption, desorption, distillation, and extraction, in the petrochemical, fine chemistry, and environmental industries. Packed column is used as a contacting facility for gas-liquid and liquid-liquid systems filled with random packed materials in the column. Packed column has various advantages such as low pressure drop, economical efficiency, thermally sensitive liquids, easy repairing restoration, and noxious gas treatment. The performance of a packed column is highly dependent on the maintenance of good gas and liquid distribution throughout a packed bed; thus, this is an important consideration in a design of packed column. In this study, hydraulic pressure drop, hold-up as a function of liquid load, and mass transfer in the air, air/water, and air-NH3/water systems were studied to find the geometrical characteristic for raschig super-ring experiment dry pressure drop. Based on the results, design factors and operating conditions to handle noxious gases were obtained. The dry pressure drop of the random packing raschig super-ring was linearly increased as a function of gas capacity factor with various liquid loads in the Air/Water system. This result is lower than that of 35 mm Pall-ring, which is most commonly used in the industrial field. Also, it can be found that the hydraulic pressure drop of raschig super-ring is consistently increased by gas capacity factor with various liquid loads. When gas capacity factor with various liquid loads is increased from 1.855 to 2.323 kg-1/2 m-1/2 S-1, hydraulic pressure drop increases around 17%. Finally, the liquid hold-up related to packing volume, which is a parameter of specific liquid load depending on gas capacity factor, shows consistent increase by around 3.84 kg-1/2 m-1/2 S-1 of the gas capacity factor. However, liquid hold-up significantly increases above it.

양수발전소의 경제성

  • 고달원
    • 전기의세계
    • /
    • v.15 no.1
    • /
    • pp.28-31
    • /
    • 1966
  • 양수발전소는 년평균 용량율이 극히 낮은 단시간운전을 대상으로 개발케 되므로 시설규모의 대용량화가 경제적이며 또한 일반적인 경향이다. 이러한 대용량화는 기계기구비의 증가 및 송수전손실을 수반하므로 이를 경감시키기 위하여는 가급적 수요중심지 혹은 고효율 화력기 접근할것이며 보다 고낙차임이 유리하게 됨은 종래의 수력지점 선정시와 같다. 이상에서 양수발전소의 개발계획은 예상되는 년용량율롸 밀접한 관계가 있다는것을 중심으로 서술하였다.

  • PDF

A Development of Computing System for Hydraulic Design and Analysis of Ship-building Piping System (선박용 배관 시스템의 수력학적 설계 및 해석 프로그램 개발)

  • Chung, H.T.;Jung, Y.B.;Cho, J.W.;Bae, J.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 2001
  • In the present study, an interactive mode of the computing system has been developed for the hydraulic analysis of the circulating waters in the industrial pipings. The system consists of three separated modules, which are linked together with common graphical user interfaces. Application to the design of the cooling sea-water system for the ships was demonstrated to be very reliable and practical in support of design activities.

  • PDF

Experimental Evaluation and Performance Analysis for a Mini Turbo-pump (소형 터보펌프에 대한 실험적 평가와 성능해석)

  • Kim, Soo-Won;Park, Moo-Ryong;Hwang, Soon-Chan;Oh, Hyoung-Woo;Yoon, Eui-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.54-60
    • /
    • 2002
  • A mini turbo-pump having 44mm diameter impeller for hydraulic power control have been tested to evaluate hydraulic performance and losses. The characteristics of the losses such as mechanical, friction, balancing rib losses were investigated. The investigation revealed that the friction loss is relatively large but the balancing rib loss small. It was found that the hydraulic efficiency of the pump at design point is very low($27\%$) due to low specific speed and large friction losses. A computational fluid dynamics(CFD) method also has been utilized for performance prediction of the mini turbo-pump to compare the computed results with the test data.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyu-Bok;Kim, Jong-Gyu;Lim, Byoung-Jik;Kim, Mun-Ki;Kang, Dong-Hyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.807-812
    • /
    • 2011
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

  • PDF