• 제목/요약/키워드: 쇄파지표 경험식

검색결과 3건 처리시간 0.014초

선형기계학습모델을 이용한 자갈해빈상에서의 쇄파지표 예측 (A Study on the Predictions of Wave Breaker Index in a Gravel Beach Using Linear Machine Learning Model)

  • 안을혁;이영찬;김도삼;이광호
    • 한국해안·해양공학회논문집
    • /
    • 제36권2호
    • /
    • pp.37-49
    • /
    • 2024
  • 지금까지 쇄파는 발생기구의 본질적인 복잡성으로 인해 실내수리모형실험을 통해 쇄파파고 및 쇄파수심 등의 쇄파지표 예측을 위한 많은 경험식이 제안되어 왔다. 하지만, 자갈해빈에 대한 쇄파의 특성 및 쇄파지표예측을 위한 연구는 거의 수행되어 있지 않았다. 본 연구에서는 자갈해빈을 대상으로 쇄파파고 및 쇄파수심의 예측을 위하여 회귀 또는 분류 문제와 관련된 다양한 연구 분야에서 높은 예측 성능을 보이는 대표적인 선형기반 기계학습기법에 기반한 쇄파지표를 예측하고자 하였다. 먼저, 자갈해빈에 대하여 기존에 제안된 쇄파지표의 경험식의 적용성을 검토하고 기존의 경험식의 자갈해빈의 쇄파지표 예측성능의 한계성을 극복하기 위하여 다양한 선형기반 기계학습 알고리즘을 적용하여 쇄파지표 예측모델을 구축하였다. 구축된 기계학습모델 중 자갈해빈에서 발생하는 쇄파파고 및 쇄파수심에 대한 높은 예측성능을 보인 모델을 기반으로 손쉬운 계산이 가능한 쇄파지표에 대한 새로운 산정식을 제안하였고 수리모형실험결과 및 기존의 경험식과 비교하고 새롭게 제안한 쇄파지표의 예측성능을 검증하였다. 본 연구에서 제안한 쇄파지표에 대한 경험식은 단순한 다항식임에도 불구하고 자갈해빈에 대한 양호한 예측성능을 보였다.

머신러닝을 이용한 새로운 Munk-type 쇄파파고 예측식의 제안 (Development of a New Munk-type Breaker Height Formula Using Machine Learning)

  • 최병종;남형식;이광호
    • 한국항해항만학회지
    • /
    • 제45권3호
    • /
    • pp.165-172
    • /
    • 2021
  • 쇄파는 연안류, 표사이동, 충격파압, 에너지소산 등과 같은 연안에서 발생하는 다양한 물리현상과 직접적인 관계가 있으므로 항만 구조물의 설계시 반드시 고려되어야 하는 중요한 설계인자 중 하나이다. 쇄파에 대한 연구들은 쇄파가 가진 고유의 복잡성으로 인해 주로 수리모형실험을 통해 쇄파파고와 쇄파수심 등과 같은 쇄파지표를 예측하기 위한 많은 경험식이 제안되어 왔다. 하지만, 기존의 쇄파지표에 대한 경험식은 일정한 방정식의 가정하에 자료의 통계적 분석을 통해 가정한 방정식의 계수들을 결정하고 있다. 본 연구에서는 회귀 혹은 분류문제와 관련된 다양한 연구분야에 있어서 높은 예측성능을 보여주는 대표적인 선형기반의 머신러닝 기법을 적용하여 천수변형에 의해 발생하는 쇄파의 한계파고를 산정하기 위한 새로운 Munk형식의 경험식을 제안하였다. 새롭게 제안된 쇄파지표식은 단순한 형태의 다항식에도 불구하고 기존의 경험공식과 유사한 예측성능을 보였다.

지도학습을 이용한 새로운 선형 쇄파지표식 개발 (A Proposal of New Breaker Index Formula Using Supervised Machine Learning)

  • 최병종;박창욱;조용환;김도삼;이광호
    • 한국해안·해양공학회논문집
    • /
    • 제32권6호
    • /
    • pp.384-395
    • /
    • 2020
  • 연안에서 천수변형에 의해 발생하는 쇄파는 표사이동, 연안류의 생성, 충격파압의 발생 등과 같은 연안역의 다양한 물리현상과 밀접한 관계를 갖고 있다. 따라서, 연안구조물의 설계 시 쇄파파고 및 쇄파수심과 같은 쇄파지표를 정확하게 예측하는 것이 중요하다. 과거부터 많은 연구자들에 의해 쇄파현상을 규명하고 예측하기 위한 많은 과학적인 노력들이 이루어져 왔다. 대표적인 쇄파에 연구들은 주로 수리모형실험을 통해 쇄파지표 예측을 위한 많은 경험식이 제안되어 왔다. 하지만, 기존의 쇄파지표에 대한 경험식은 일정한 방정식의 가정하에 자료의 통계적 분석을 통해 가정한 방정식의 계수들을 결정하고 있다. 본 논문에서는 회귀 혹은 분류문제와 관련된 다양한 연구분야에 있어서 높은 예측성능을 보여주는 대표적인 선형기반의 지도학습 머신러닝 기법을 적용하였다. 적용된 머신러닝 기법을 기반으로 기존의 쇄파에 대한 실험자료로부터 쇄파지표 예측을 위한 모델을 개발하고, 학습된 모델로부터 쇄파예측을 위한 새로운 선형식을 제시하였다. 새롭게 제안된 쇄파지표식은 단순한 선형식임에도 불구하고 기존의 경험 공식에 비해 유사한 예측성능을 보였다.