• 제목/요약/키워드: 송신코일

검색결과 36건 처리시간 0.02초

Design and Performance Analysis of Magnetic Resonant Wireless Power Transfer Receiver for Implant Medical Device (인체 삽입형 자기 공진 무선전력전송 수신기 설계 및 성능 분석)

  • Kim, Sungjae;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제29권12호
    • /
    • pp.935-941
    • /
    • 2018
  • In this study, we propose a suitable magnetic resonant wireless power transfer(WPT) system topology for size-limited implant medical devices(IMDs). The proposed modified series-parallel topology(mSPT) can be implemented by adding an inductor in series to the parallel-connected Rx coil and a capacitor. The topology achieves high efficiency when the Rx coil has a small inductance. The validity and operating conditions of the system are verified theoretically through circuit analysis. Experiments were conducted with bio-blocks, which are made of pork fat and muscle. When the Rx coils were inserted into the blocks at a depth of 2.5~10 mm, mSPT showed 17.79 % improved efficiency on average compared with the conventional series-series topology(SST). In the case of 32 dBm WPT in air, the Rx coil's heating rate for the mSPT was $0.18^{\circ}C/s$, whereas the SST was $0.75^{\circ}C/s$. It was confirmed that the mSPT is more suitable for an IMD-targeted WPT system.

Three-dimensional Finite Difference Modeling of Time-domain Electromagnetic Method Using Staggered Grid (엇갈린 격자를 이용한 3차원 유한차분 시간영역 전자탐사 모델링)

  • Jang, Hangilro;Nam, Myung Jin;Cho, Sung Oh;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • 제20권3호
    • /
    • pp.121-128
    • /
    • 2017
  • Interpretation of time-domain electromagnetic (TEM) data has been made mostly based on one-dimensional (1-D) inversion scheme in Korea. A proper interpretation of TEM data should employ 3-D TEM forward and inverse modeling algorithms. This study developed a 3-D TEM modeling algorithm using a finite difference time-domain (FDTD) method with staggered grid. In numerically solving Maxwell equations, fictitious displacement current is included based on an explicit FDTD method using a central difference approximation scheme. The developed modeling algorithm simulated a small-coil source configuration to be verified against analytic solutions for homogeneous half-space models. Further, TEM responses for a 3-D anomaly are modeled and analyzed. We expect that it will contribute greatly to the precise interpretation of TEM data.

Design of Two-Dimensional Resonant Wireless Power Transfer Using 90˚ Phase Shifted Inputs (90˚ 입력위상의 변화를 통한 2차원 무선전력전송 구현)

  • Kim, Sanghwan;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제52권2호
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, two-dimensional resonant transmitter and receiver for WPT is designed and implemented using method that use $90^{\circ}$ phase shifted input power to orthogonal transmitter. Mutual inductance is minimized by using proposed each orthogonal coil of receiver and the method that inputs $90^{\circ}$ phase shifted power is used to radiate magnetic energy into two dimension. This method facilitates two dimensional resonant WPT by solving power efficiency degradation problem according to location in general WPT. The resonance frequency is 6.78 MHz and the distance between transmitting and receiving resonator is 200 mm. The transfer efficiency of the proposed wireless power transfer system is higher than 40 % at all direction.

Improvement of Power Transfer Efficiency Using Negative Impedance Converter for Wireless Power Transfer System with Magnetic Resonant Coupling (부성 임피던스 변환기를 적용한 자기공명 방식 무선전력전송 시스템의 효율 개선)

  • Yoon, Se-Hwa;Kim, Tae-Hyung;Park, Jin-Kwan;Kim, Seong-Tae;Yun, Gi-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제28권12호
    • /
    • pp.933-940
    • /
    • 2017
  • A wireless power transfer system with a negative impedance converter(NIC) was designed and tested. The system was investigated to identify the effects of ferrites and conductors. To improve the power transfer efficiency(PTE), the Q-factor of the transmitter was enhanced by the negative resistance generated by the NIC. The NIC was composed of an Op-Amp and resistors. The negative resistance was obtained with respect to a resistor connected in a feedback loop. The dimension of the Tx coil was $250mm{\times}250mm{\times}0.8mm$. The impedance and Q-factor were $31+j1874{\Omega}$ and 60, respectively. The negative resistance was selected to be $30{\Omega}$, and the Q-factor was increased to 900 by reduction of the transmitter resistance, which was about 15 times higher than that of a conventional transmitter. The measured PTE was greatly improved in comparison to that of a conventional system. These results demonstrate that the PTE is enhanced by using the NIC.

A Design of Transceiver for 13.56MHz RFID Reader using the Peak Detector with Automatic Reference Voltage Generator (자동 기준전압 생성 피크 검출기를 이용한 13.56 MHz RFID 리더기용 송수신기 설계)

  • Kim, Ju-Seong;Min, Kyung-Jik;Nam, Chul;Hurh, Djyoung;Lee, Kang-Yun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제47권3호
    • /
    • pp.28-34
    • /
    • 2010
  • In this paper, the transceiver for RFID reader using 13.56MHz as a carrier frequency and meeting International Standard ISO 14443 type A, 14443 type B and 15693 is presented. The receiver is composed of envelope detector, VGA(Variable Gain Amplifier), filter, comparator to recovery the received signal. The proposed automatic reference voltage generator, positive peak detector, negative peak detector, and data slicer circuit can adjust the decision level of reference voltage over the received signal amplitudes. The transmitter is designed to drive high voltage and current to meet the 15693 specification. By using inductor loading circuit which can swing more than power supply and drive large current even under low impedance condition, it can control modulation rate from 30 percent to 5 percent, 100 perccnt and drive the output currents from 5 mA to 240 mA depending on standards. The 13.56 MHZ RFID reader is implemented in $0.18\;{\mu}m$ CM08 technology at 3.3V single supply. The chip area excluding pads is $1.5mm\;{\times}\;1.5mm$.

Characteristic Study of Small-sized and Planer Resonator for Mobile Device in Magnetic Wireless Power Transfer (소형 모바일 기기용 공진형 무선전력전송 시스템의 공진기 평면화 및 소형화에 따른 특성 연구)

  • Lee, Hoon-Hee;Jung, Chang-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제54권4호
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, a Small-sized and planer resonator design of Magnetic Resonance - Wireless Power Transfer(MR-WPT) were proposed for practical applications of mobile devices, such as a laptop, a smart-phone and a tablet pc. The proposed MR-WPT system were based on four coil MR-WPT and designed as a transmitter part (Tx) and a receiver part (Rx) both are the same shape with the same loop and resonator. There are four different spiral coil type of resonators with variable of line length, width, gap and turns in $50mm{\times}50mm$ size. The both of top and bottom side of substrate(acrylic; ${\varepsilon}_r=2.56$, tan ${\delta}=0.008$) ere used to generate high inductance and capacitance in limited small volume. Loops were designed on the same plane of resonator to reduce their volume, and there are three different size. The proposed MR-WPT system were fabricated with two acrylic substrate plane of Tx and Rx each, the Rx and Tx loops and resonators were fabricated of copper sheets. There are 12 combinations of 3 loops and 4 resonators, each combination were measured to calculate transfer efficiency and resonance frequency in transfer distance from 1cm to 5cm. The measured results, the highest transfer efficiency was about 70%, and average transfer efficiency was 40%, on the resonance frequency was about 6.78 MHz, which is standard band by A4WP. We proposed small-sized and planer resonator of MR-WPT and showed possibility of mobile applications for small devices.