• Title/Summary/Keyword: 솔리드 모델

Search Result 127, Processing Time 0.031 seconds

A Comparative Analysis between 3D Geological Modeling and Magnetic Data of Fe-Mn Ore in Ugii Nuur, Mongolia (몽골 우기누르 철-망간 부존 지역의 3차원 지질모델과 자력탐사 결과의 비교분석)

  • Lee, Jeong-a;Yu, Jaehyung;Park, Gyesoon;Lee, Bum han;Kim, In-Joon;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.313-324
    • /
    • 2015
  • This study constructed a 3D geological model for Uggi Nuur Fe-Mn mineralization zone in Mongolia, and the 3D geological distribution is cross-analyzed with magnetic anomaly distribution to figure out relationship between ore zone and subsurface geology. As a result of 4 step 3D modeling procedures including geological cross section, surface modeling, foliation modeling and solid modeling, the geology of the both study area is bordered by faults in NW direction with Munguntessj formation being located in the west side of the fault while Yashill formation is located on the other side of the fault. Moreover, the strike direction of foliation in the both formation shows same directional pattern with the NW faults. The magnetic anomaly distribution reveals that higher anomaly values are concentrated to near the ground surface. The analyses of 3 dimensional distribution between subsurface geology and magnetic anomaly indicates that higher anomaly is mainly distributed over the Munguntessj formation as a elongated lens bodies whereas the magnetic anomaly is evenly found in the both of Munguntessj formation and Yashill formation in the study area 2. It infers that volcanic activities associated mineralization occurred during silurian period, and the mineralized zone is thought to be realigned along the geological structures caused by later stage tectonic activities.

Development of Artificial Intelligence Joint Model for Hybrid Finite Element Analysis (하이브리드 유한요소해석을 위한 인공지능 조인트 모델 개발)

  • Jang, Kyung Suk;Lim, Hyoung Jun;Hwang, Ji Hye;Shin, Jaeyoon;Yun, Gun Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.773-782
    • /
    • 2020
  • The development of joint FE models for deep learning neural network (DLNN)-based hybrid FEA is presented. Material models of bolts and bearings in the front axle of tractor, showing complex behavior induced by various tightening conditions, were replaced with DLNN models. Bolts are modeled as one-dimensional Timoshenko beam elements with six degrees of freedom, and bearings as three-dimensional solid elements. Stress-strain data were extracted from all elements after finite element analysis subjected to various load conditions, and DLNN for bolts and bearing were trained with Tensorflow. The DLNN-based joint models were implemented in the ABAQUS user subroutines where stresses from the next increment are updated and the algorithmic tangent stiffness matrix is calculated. Generalization of the trained DLNN in the FE model was verified by subjecting it to a new loading condition. Finally, the DLNN-based FEA for the front axle of the tractor was conducted and the feasibility was verified by comparing with results of a static structural experiment of the actual tractor.

A Study on Shape Optimum Design for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상최적설계)

  • Yang, Wook-Jin;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • This paper addresses a method for shape optimization of a continuous elastic body considering stability, i.e., buckling behavior. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Unlike the conventional finite difference method (FDM), this method is efficient in that only a couple of analyses are required regardless of the number of design parameters. Commercial software such as ANSYS can be employed since the method requires only the result of the analysis in computation of the sensitivity. Though the buckling problem is more efficiently solved by structural elements such as a beam and shell, elastic solids have been chosen for the buckling analysis because solid elements can generally be used for any kind of structure whether it is thick or thin. Sensitivity is then computed by using the mathematical package MATLAB with the initial stress and buckling analysis of ANSYS. Several problems we chosen in order to illustrate the efficiency of the presented method. They are applied to the shape optimization problems to minimize weight under allowed critical loads and to maximize critical loads under same volume.

A study on 3D Modeling Process & Rendering Image of CAD Program-With Case study on Cellular Phone Design- (캐드에 의한 3차원 모델링 제작과정과 렌더링 이미지 연출에 관한 연구-무선 이동 전화기 디자인 사례를 중심으로-)

  • 이대우
    • Archives of design research
    • /
    • no.18
    • /
    • pp.25-34
    • /
    • 1996
  • Industrial design development methods and processes have changed in accordance with Industrial Information Age. These days, problems are created by existing methods and evaluation of design value , all problems concerned with time and finances sitaution have been made a subject of discussion. Development of design processes have been changed by the development of problem recognition and solving tools, and dpsign tpchnulugy havp hppn replaced by computer technology,Thus. software design processes linking thoughtware to hardware are used in the solution of design problems with many parts. In this study, 3D Modeling samples are presented, 3D Modeling can realise ' Ideas' to '3Dimentional Virtual Ohjects'. These effect and value are anle to decisively influence the process of design problem conference-ebealuation-solution.Proxesses of actual modeling and rendering are made as follows. By compusition of simple 20 drawings and shaping them into 30 objects, 30 solid models can be made. To prssent effectivley, we can make a sample model by varying camera views,light sourses,materials and colours etc. This sample is evaluated by various cumposition, methods and PERT(Program Evaluation and Review Technique). This cuncrete sample (tentative plan)is changed within the CAD SYSTEM by design evaluation, and then converted to flowchart of mass productive conception through refined data. So, that tentative plan can be conformed to design desire actuillly, to the utmost degree. Finally, this design process can be proposed as il new method in cuntrast with current methods. The aim of this study is to suggest effective evaluation methods of design outcome among many evaluating elements.

  • PDF

Lightweight Design of a Vertical Articulated Robot Using Topology Optimization (위상최적화를 이용한 수직 다관절 로봇의 경량 설계)

  • Hong, Seong Ki;Hong, Jung Ki;Kim, Tae Hyun;Park, Jin Kyun;Kim, Sang Hyun;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1683-1688
    • /
    • 2012
  • Topology optimization is applied for the lightweight design of three main parts of a vertical articulated robot: a base frame, a lower and a upper frame. Design domains for optimization are set as large solid regions that completely embrace the original parts, which are discretized by using three-dimensional solid elements. Design variables are parameterized one-to-one to the material properties of each element by using the SIMP method. The objective of optimization is set as the multi-objective form combining the natural frequencies and mean compliances of a structure for which load steps of interest are selected from the multibody dynamics analysis of a robot. The obtained results of topology optimization are post-processed to designs favorable to manufacturability for casting process. The final optimized results are 11.0% (base frame), 12.0% (lower frame) and 10.0% (upper frame) lighter with similar or even higher static and dynamic stiffnesses than the original models.

Development of A Component and Advanced Model for The Smart PR-CFT Connection Structure (스마트 반강접 (PR) 콘크리트 충전 강재 합성 (CFT) 접합 구조물에 대한 해석모델의 개발)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study investigates the performance of composite (steel-concrete) frame structures through numerical experiments on individual connections. The innovative aspects of this research are in the use of connections between steel beams and concrete-filled tube (CFT)columns that utilize a combination of low-carbon steel and shape memory alloy (SMA) components. In these new connections, the intent is to utilize the recentering provided by super-elastic shape memory alloy tension bars to reduce building damage and residual drift after a major earthquake. The low-carbon steel components provide excellent energy dissipation. The analysis and design of these structures is complicated because the connections cannot be modeled as being simply pins or full fixity ones they are partial restraint (PR). A refined finite element (FE) model with sophisticated three dimensional (3D) solid elements was developed to conduct numerical experiments on PR-CFT joints to obtain the global behavior of the connection. Based on behavioral information obtained from these FE tests, simplified connection models were formulated by using joint elements with spring components. The behavior of entire frames under cyclic loads was conducted and compared with the monotonic behavior obtained from the 3D FE simulations. Good agreement was found between the simple and sophisticated models, verifying the robustness of the approach.

Automatic Generation of Machining Sequence for Machined Parts Using Machining Features (특징형상을 이용한 절삭가공부품의 가공순서 자동생성)

  • Woo, Yoonhwan;Kang, Sangwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.642-648
    • /
    • 2016
  • As 3D solid modeling prevails, a range of applications have become possible and intensive research on the integration of CAD/CAM has been conducted. As a consequence, methods to recognize the machining features from CAD models have been developed. On the other hand, generating a machining sequence using the machining features is still a problem due to a combinatorial problem with a large number of machining features. This paper proposes a new method that utilizes the precedence constraints through which the number of the combinations is reduced drastically. This method can automatically generate machining sequences requiring the lowest amount of machining time. An airplane part was used to test the usefulness of the proposed method.

Performance Evaluation of Floor Vibration of Biaxial Hollow Slab Subjected to Walking Load (보행하중에 대한 2방향 중공슬래브의 진동성능 평가)

  • Kim, Min-Gyun;Park, Hyun-Jae;Lee, Dong-Guen;Hwang, Hyun-Sik;Kim, Hyun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.11-21
    • /
    • 2009
  • Considering that the weight of a biaxial hollow slab system is not increased with an incremental increase in its thickness, and that the flexural stiffness of a biaxial hollow slab is not significantly lower than that of a general solid slab, there has been a growing need for biaxial hollow slab systems, because long span structures are in great demand. In a long span structure, the problem of vibration of floor slabs frequently occurs, and the dynamic characteristics of a biaxial hollow slab system are quite different from the conventional floor systems. Therefore, in this study, the floor vibration of a biaxial hollow slab system subjected to walking load is investigated in comparison with a conventional floor slab system. For the efficiency of time history analysis, an equivalent plate slab model that can precisely represent the dynamic behavior of a biaxial hollow slab system is used. From the analytical results, it was determined that vibration of a biaxial hollow slab system subjected to walking load is evaluated as "office-level vibration," according to the classifications of the architectural institute of Japan and ANSI.

Comparison of Film Measurements, Convolution$^{}$erposition Model and Monte Carlo Simulations for Small fields in Heterogeneous Phantoms (비균질 팬텀에서 소조사면에 대한 필름측정, 회선/중첩 모델과 몬테 카를로 모사의 비교 연구)

  • 김상노;제이슨손;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.89-95
    • /
    • 2004
  • Intensity-modulated radiation therapy (IMRT) often uses small beam segments. The heterogeneity effect is well known for relatively large field sizes used in the conventional radiation treatments. However, this effect is not known in small fields such as the beamlets used in IMRT. There are many factors that can cause errors in the small field i.e. electronic disequilibrium and multiple electron scattering. This study prepared geometrically regular heterogeneous phantoms, and compared the measurements with the calculations using the Convolution/Superposition algorithm and Monte Carlo method for small beams. This study used the BEAM00/EGS4 code to simulate the head of a Varian 2300C/D. The commissioning of a 6MV photon beam were performed from two points of view, the beam profiles and depth doses. The calculated voxel size was 1${\times}$1${\times}$2$\textrm{cm}^2$ with field sizes of 1${\times}$1$\textrm{cm}^2$, 2${\times}$2$\textrm{cm}^2$, and 5${\times}$5$\textrm{cm}^2$. The XiOTM TPS (Treatment Planning System) was used for the calculation using the Convolution/Superposition algorithm. The 6MV photon beam was irradiated to homogeneous (water equivalent) and heterogeneous phantoms (water equivalent + air cavity, water equivalent + bone equivalent). The beam profiles were well matched within :t1 mm and the depth doses were within ${\pm}$2%. In conclusion, the dose calculations of the Convolution/Superposition and Monte Carlo simulations showed good agreement with the film measurements in the small field.

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion (수중폭발에 의한 해중터널의 동적거동)

  • Hong, Kwan-Young;Lee, Gye-Hee;Lee, Seong-Lo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.215-226
    • /
    • 2018
  • In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.