• Title/Summary/Keyword: 솔라셀

Search Result 56, Processing Time 0.029 seconds

An Analysis of Formability of Micro Pattern Forming on the Thin Sheet Metal (마이크로 박판 미세 패턴 성형공정의 성형성에 대한 해석적 연구)

  • Cha, Sung-Hoon;Shin, Myung-Soo;Kim, Jong-Ho;Lee, Hye-Jin;Kim, Jong-Bong
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2009
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. The solar cell plate may have millions of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll-to-roll forming process. Also formability is analysed for various number of mesh, protrusion shapes and forming temperature.

Development of virtual reality contents for vocational education Research on Semiconductor production line Clean Room Tour (직업교육을 위한 가상현실 콘텐츠 구현 반도체 생산라인 클린룸 투어 VR 중심으로)

  • Lee, Sun-Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.191-197
    • /
    • 2023
  • The purpose of the study was to provide an educational environment for designing and producing virtual reality practice contents that can be used in semiconductor production lines and clean rooms. Through this process, the user can acquire practical knowledge through experiences close to reality, such as experiencing the main semiconductor solar cell manufacturing facilities as well as procedural knowledge before and after entering the clean room.. In particular, it provides users with an immersion experience close to reality by creating an environment for experiential content necessary for semiconductor and solar cell manufacturing processes and clean room entrance procedure experiential content, which is expected to improve education immersion, realism, cost, efficiency, and education satisfaction. Depending on the characteristics of Dangerous, Impossible, Counter-productive etc, immersive content makes learners immersed in the learning content, induces proactive/active learning, and embodies the learning content, resulting in positive results in the field of improving educational effectiveness.

Simulation of Solar Cell Maximum Power Point Using Matlab (Matlab을 이용한 솔라셀의 최대전력점 시뮬레이션)

  • Lee K.Y.;Kim H.S.;Park J.M.;Cho G.B.;Baek H.L.;Hanyeong College D.H. Kim
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.204-207
    • /
    • 2003
  • PV model is presented based on the shockley diode equation. The simple model has a photo-current source, an single diode junction and a series resistance and includes temperature dependences. An accurate PV module electrical model is presented, matching with boost converter MPPT strategy and demonstrated in Matlab for a typical general purpose solar cell. Given solar insolation and temperature, the model returns current vector and MPP.

  • PDF

A Passive Transponder for Visible Light Identification Using a Solar Cell (솔라셀을 이용한 가시광 인식용 수동형 트랜스폰더)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.238-244
    • /
    • 2014
  • In this paper, we introduce a new passive transponder that operates without external power in a visible light identification system. The transponder consists of a solar cell, a photodiode, a microprocessor, and a visible LED. When a reader sends light to the transponder, the solar cell generates current from the reader light and supplies power to the other elements in the transponder. At the same time, the photodiode detects the pulse in the reader light and initiates a microprocessor to generate and send a responding light to the reader. In experiments, we realized a passive transponder using a solar cell that operated at a distance of 1m without external power.

An Omnidirectional Receiver for Visible Light Communication Using a Flexible Solar Cell (플렉시블 솔라셀을 이용한 전 방위 가시광 수신기)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.173-178
    • /
    • 2017
  • In this paper, we newly developed an omnidirectional receiver for visible light communication (VLC). The omnidirectional receiver was composed of a flexible solar cell attached on a cylindrical surface with its axis in vertical direction. The solar cell surface was symmetrical and showed an almost uniform receiving pattern in a horizontal plane. The maximum difference in a receiving pattern was within 7% of its peak value in a horizontal plane. This configuration is very easy to fabricate and useful in constructing wireless sensor networks in which one receiver needs to detect multiple LED signals in different directions.

A Wireless Identification System Using a Solar Cell and RF Transceivers (솔라셀과 RF송수신기를 이용한 무선인식장치)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.337-343
    • /
    • 2016
  • In this paper, we newly introduce a wireless identification system using a solar cell and RF transceivers. The reader sends interrogating signal to a transponder using LED visible light, and the transponder responds to the reader using RF signal. The transponder consists of a solar cell, an amplifier, a microprocessor, and an RF transmitter. The solar cell receives the visible light from the reader and generates current to supply electric power to the other devices in the transponder. At the same time, the solar cell detects interrogating signal in the reader light. The microprocessor senses the interrogating signal and generates a responding signal. The RF transmitter radiates the responding signal to the reader. The transponder is a passive circuit because it operates without external power. In experiments, the maximum read distance between a reader and a transponder was about 1.6 meter.

Performance Test of Supercharger for Vehicle using Solar Cell (태양광발전 방식의 자동차용 과급 장치의 성능 평가)

  • Ko, Kwang-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.942-948
    • /
    • 2011
  • The performance of a supercharger for vehicle using solar cell attached on the exterior of a car, an auxiliary battery, and an air compressor was evaluated in this study. This supercharger is composed of a solar cell of 40W, a battery of 60 Ah, an air compressor of 17 A, 8 $kgf/cm^2$ and an air tank of 8L. It takes about 6 days to charge the battery with the solar cell and the high pressure air of 8L can be supplied about 70 times to engine intake with this battery. The intake pressure increased by about 20~40% with this supercharger. The vehicle power and accelerating performance are enhanced by 87% and 50% each in the low speed range. But the performance improved little in the high speed range because of the rather constant flow rate of air supplied by this type of supercharger.

Solar Cell Classification using Gaussian Mixture Models (가우시안 혼합모델을 이용한 솔라셀 색상분류)

  • Ko, Jin-Seok;Rheem, Jae-Yeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • In recent years, worldwide production of solar wafers increased rapidly. Therefore, the solar wafer technology in the developed countries already has become an industry, and related industries such as solar wafer manufacturing equipment have developed rapidly. In this paper we propose the color classification method of the polycrystalline solar wafer that needed in manufacturing equipment. The solar wafer produced in the manufacturing process does not have a uniform color. Therefore, the solar wafer panels made with insensitive color uniformity will fall off the aesthetics. Gaussian mixture models (GMM) are among the most statistically mature methods for clustering and we use the Gaussian mixture models for the classification of the polycrystalline solar wafers. In addition, we compare the performance of the color feature vector from various color space for color classification. Experimental results show that the feature vector from YCbCr color space has the most efficient performance and the correct classification rate is 97.4%.

A study on characteristic variation of solar cells for lanterns as a temperature change (정원등(lanterns)용 태양전지셀의 온도특성 변화연구)

  • Lee, Se-Hyun;Cho, Mee-Ryoung;Shin, Sang-Wuk;Hwang, Myung-Keun;Yang, Seong-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.206-209
    • /
    • 2006
  • In this paper, I try to measure the electrical characteristics of PV cell for lanterns with solar simulator and simulated with PC1D software. I keep my eye on the characteristics variation of PV cell as a temperature change. Therefore, I try to increase a temperature of controlled block from $10^{\circ}C$ to $50^[\circ}C$ while measuring the FV cell. As a result, A variation caused by voltage have an effect on the efficacy of PV cell. Hence it is an important variable when a designer plan to make a solar cell for lanterns.

  • PDF