• 제목/요약/키워드: 손 영역 분할

검색결과 48건 처리시간 0.028초

적외선 카메라를 이용한 에어 인터페이스 시스템(AIS) 연구 (A Study on Air Interface System (AIS) Using Infrared Ray (IR) Camera)

  • 김효성;정현기;김병규
    • 정보처리학회논문지B
    • /
    • 제18B권3호
    • /
    • pp.109-116
    • /
    • 2011
  • 본 논문에서는 기계적인 조작 장치 없이 손동작만으로 컴퓨터를 조작할 수 있는 차세대 인터페이스인 에어 인터페이스를 구현하였다. 에어 인터페이스 시스템 구현을 위해 먼저 적외선의 전반사 원리를 이용하였으며, 이후 획득된 적외선 영상에서 손 영역을 분할한다. 매 프레임에서 분할된 손 영역은 이벤트 처리를 위한 손동작 인식부의 입력으로 사용되고, 최종적으로 개별 제어 이벤트에 맵핑된 손동작 인식을 통하여 일반적인 제어를 수행하게 된다. 본 연구에서는 손영역 검출과 추적, 손동작 인식과정을 위해 구현되어진 영상처리 및 인식 기법들이 소개되며, 개발된 에어 인터페이스 시스템은 길거리 광고, 프레젠테이션, 키오스크 등의 그 활용성이 매우 클 것으로 기대된다.

손가락 마디 추정을 이용한 비전 및 깊이 정보 기반 손 인터페이스 방법 (Vision and Depth Information based Real-time Hand Interface Method Using Finger Joint Estimation)

  • 박기서;이대호;박영태
    • 디지털융복합연구
    • /
    • 제11권7호
    • /
    • pp.157-163
    • /
    • 2013
  • 본 논문에서는 손가락 마디 추정을 이용한 비전 및 깊이 정보 기반 손 인터페이스 방법을 제안한다. 먼저 비주얼 영상 및 깊이 정보 영상을 매핑한 후 왼손과 오른손의 영역의 레이블링 및 윤곽선 잡음 보정 후 각 손 영역에 대하여 손 중심점 및 회전각을 구현한다. 그리고 손 중심점에서 일정간격의 원을 확장하여 손 경계 교차점의 중간 지점을 계산하여 손가락 끝점과 마디를 추정하여 사용자의 손가락 동작을 인식한다. 본 방법을 실험한 결과 손의 회전 및 손가락 시작점 및 끝점을 정확하게 추정하여 다양한 손동작 인식 및 제어가 가능함을 보였다. 왼손과 오른손을 사용하여 다양한 손 포즈에 대해 실험한 결과, 본 논문의 제안 방법은 평균 90% 이상의 정확도로 초당 25프레임 이상의 처리 성능을 보였다. 제안 방법은 컴퓨터간의 HCI 제어, 게임, 교육 등의 비접촉식 인터페이스 응용분야에 적용될 수 있다.

LCD TV의 전력 절감을 위한 다분할 디밍 제어 방식 (Multi-section Dimming Control Scheme for Power Saving of LCD TV)

  • 강성진;손영수;정혜동
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 춘계학술발표논문집
    • /
    • pp.649-652
    • /
    • 2009
  • 본 논문에서는 LCD TV의 전력 소비를 절감하기 위해 백라이트 유닛을 다분할하여 디밍 제어를 수행하는 알고리즘을 제안한다. 최근 LED 백라이트 유닛을 채용한 대형 LCD TV가 출시됨에 따라서, 백라이트 유닛의 디밍 제어를 통해 LCD TV에서 전체 전력 소비를 절감하고자 하는 기술이 활발히 연구되어 왔다. 기존의 방식은 전체 화면을 MxN개의 분할로 나누어, 각 분할 영역마다 화면의 최대 밝기 정보를 추출하여 디밍 제어를 수행했지만, 본 논문에서는 각 분할영역마다 인접한 영역으로부터 간섭받는 빛의 양을 반영하여, 실제 디밍 제어 값을 다시 계산함으로써, 추가적인 전력 절감 효과를 얻을 수 있는 방식을 제안하고 성능 평가를 하였다.

  • PDF

수화 인식을 위한 얼굴과 손 추적 알고리즘 (Face and Hand Tracking Algorithm for Sign Language Recognition)

  • 박호식;배철수
    • 한국통신학회논문지
    • /
    • 제31권11C호
    • /
    • pp.1071-1076
    • /
    • 2006
  • 본 논문에서는 수화 인식을 위한 얼굴 및 손 추적시스템을 제안한다. 제안된 시스템은 검출 및 추적 단계로 구분된다. 검출 단계에서는 신호의 주체인 얼굴과 손에 위치한 피부 특징을 이용하였다. CbCr 공간에서의 타원 모델을 구성하여 피부 색상을 검출하고 피부 영역을 분할한다. 그리고 크기와 얼굴 특징을 이용하여 얼굴과 손 영역을 정의한다. 추적 단계에서는 동작 추정을 위하여 첫 번째 손 영역으로 예측된 다음의 손위치를 연산함으로써 두 번째 손의 영역을 유도해낸다. 그러나 갑작스런 움직임의 속도 변화가 있을 경우 연속된 프레임에서 추적된 위치는 부정확하였다. 이러한 점을 해결하고자 손 영역에 대하여 반복적인 재연산을 수행하여 적응적으로 영역을 찾음으로써 오차를 보정하도록 하였다. 실험 결과 제안된 방법은 기존의 방법보다 4%의 처리 시간이 증가된 반면, 예측 오차는 96.87%까지 감소시킬 수 있었다.

깊이정보를 이용한 케스케이드 방식의 실시간 손 영역 검출 (Real-time Hand Region Detection based on Cascade using Depth Information)

  • 주성일;원선희;최형일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권10호
    • /
    • pp.713-722
    • /
    • 2013
  • 본 논문에서는 깊이정보를 이용하여 케스케이드 방식에 기반한 실시간 손 영역 검출 방법을 제안한다. 실험 환경 조명 조건의 변화로부터 빠르고 안정적으로 손 영역을 검출하기 위해 깊이정보만을 이용한 특징을 제안하며, 부스팅과 케스케이드 방법을 이용한 분류기를 통해 손 영역 검출 방법을 제안한다. 먼저, 깊이정보만을 이용한 특징을 추출하기 위해 입력영상의 중심 깊이 값과 분할된 블록의 평균 깊이 값의 차이를 계산하고, 모든 크기의 손 영역 검출을 위해 중심 깊이 값과 2차 선형 모델을 이용하여 손 영역의 크기를 예측한다. 그리고 손 영역으로부터의 특징 추출을 통한 학습 및 인식을 위해 케스케이드 방식을 적용한다. 본 논문에서 제안한 분류기는 정확도를 유지하고 속도를 향상시키기 위하여 각 스테이지를 한 개의 약분류기로 구성하고 검출율을 만족하면서 오류율이 가장 낮은 임계값을 구하여 과적합 학습을 수행한다. 학습된 분류기를 이용하여 손 영역을 분류하고, 병합단계를 통해 최종 손 영역을 검출한다. 마지막으로 성능 검증을 위해 기존의 다양한 아다부스트와 정량적, 정성적 비교 분석을 통해 제안하는 손 영역 검출 알고리즘의 효율성을 입증한다.

적외선 카메라를 이용한 실시간 손동작 인식 인터페이스 (Real-Time Hand Gesture Recognition Interface Based on IR Camera)

  • 홍석민;;이병국
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2012년도 춘계학술발표대회논문집
    • /
    • pp.22-25
    • /
    • 2012
  • 본 논문에서는 키보드나 마우스와 같은 인풋 디바이스 없이 손동작만으로 컴퓨터를 조작할 수 있는 차세대 인터페이스인 에어 인터페이스를 구현하였다. 이 시스템 구현을 위해 먼저 적외선 카메라와 적외선 LED를 사용하였고, 또한 적외선의 전반사의 원리를 이용하였다. 이를 통해 획득된 적외선 영상은 다양한 영상처리 기술을 통해 손 영역을 분할, 검출하게 되고, 검출된 정보를 이용하여 다양한 메타포를 구현 하였으며, 최종적으로 개별적인 제어 이벤트에 각각 맵핑되어 컴퓨터를 제어 및 동작하는 과정을 수행하게 된다. 본 연구에서는 손 영역의 검출과 추적, 인식과정 등을 자세히 서술하였으며, 다양한 메타포도 함께 소개가 된다. 그리고 본 연구에서 사용된 기술을 더욱 발전시키면 사회 전반적으로 다양한 부분에서 적극 활용될 것으로 기대된다.

  • PDF

SOFM신경망을 이용한 수화 형상 인식 (Sign Language Shape Recognition Using SOFM Neural Network)

  • 김경호;김종민;정재영;이웅기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.283-284
    • /
    • 2009
  • 본 논문은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 손 영역만을 분할한 후 자기 조직화 특징 지도(SOFM: Self Organized Feature Map) 신경망 알고리즘을 이용하여 손 형상을 인식함으로서 수화인식을 위한 보다 안정적이며 강인한 인식 시스템을 구현하고자 한다.

HCI 시스템의 손 추적을 위한 수정 블록 정합 알고리즘 (The Modified Block Matching Algorithm for a Hand Tracking of an HCI system)

  • 김진옥
    • 인터넷정보학회논문지
    • /
    • 제4권4호
    • /
    • pp.9-14
    • /
    • 2003
  • GUI(Grophic User Interface) 기반의 상호작용은 컴퓨터를 더 사용하기 간단하고 쉽게 만들었다. 그러나 GUI 기반의 상호작용은 자연스럽고 직관적이며 적응적인 사용자의 요구사항을 만족시키기 위해 필요한 상호 작용 기능을 쉽게 지원하지는 못한다. 본 연구에서는 이미지 시퀀스에서 손을 추적하고 가상 현실에서 포인팅 장치로 마우스를 대체하기 위해 각 비디오 프레임에서 손을 인식하는데 유용한 방법인 수정 BMA를 제안했으며 이를 이용해 초당 30 프레임의 HCI 시스템을 구현했다. HCI 시스템을 구현하는데 가장 중요한 기준은 정확한 움직임 벡터 포착과 그의 실시한 처리이다. 수정 BMA는 실시간 처리를 위해 손의 위치, 움직임 방향을 고려한 손 영역을 분할, 손 영역의 색상 분포를 예측하는데 적용했다. 실험 결과는 YCbCr 좌표를 이용한 수정 BMA가 실시간 처리와 인식율을 보장함을 보여 준다. YCbCr 색상 좌표는 각 픽셀 색상의 휘도를 제거한 RGB 색상 좌표보다 더 적은 비트로 코딩 가능하며 주변 상황에 덜 민감하다. 수정 BMA를 이용한 손 추적은 가상현실, 게임과 장애인을 위한 HCI시스템 적용가능하다.

  • PDF

자기 조직화 특징 지도(SOFM)와 주성분 분석을 이용한 손 형상 검출 및 인식 (Hand Shape Detection and Recognition using Self Organized Feature Map(SOMF) and Principal Component Analysis)

  • 김경호;이기준
    • 한국콘텐츠학회논문지
    • /
    • 제13권11호
    • /
    • pp.28-36
    • /
    • 2013
  • 본 논문은 손 형상 인식을 위한 보다 안정적이며 조명 변화와 회전에 강인하게 손 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘에 대해 제안한다. 제안한 알고리즘은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 전처리 과정을 거쳐 손 영역만을 분할한 후 자기조직화 특징 지도(SOFM: Self Organized Feature Map) 알고리즘을 이용하여 손 형상을 인식하게 된다. 그러나 조명 변화에 민감하고 자유도가 큰 손 영역을 정확히 인식하기란 쉽지 않으며 오차 범위도 크기 때문에 본 논문에서는 인식률을 높이기 위해 각각의 손 형상에 대한 회전 정보를 데이터베이스화 한 후 주성분 분석을 적용하여 군집화 함으로서 인식오차를 줄였다. 또한 차원 축소로 인해 많은 계산 량이 요구되지 않기 때문에 실시간 인식 시간도 줄일 수 있었다.

은닉된 손가락 예측이 가능한 실시간 손 포즈 인식 방법 (A Real-time Hand Pose Recognition Method with Hidden Finger Prediction)

  • 나민영;최재인;김태영
    • 한국게임학회 논문지
    • /
    • 제12권5호
    • /
    • pp.79-88
    • /
    • 2012
  • 본 논문에서는 키보드나 마우스를 이용하지 않고 손 포즈나 동작으로 직관적인 사용자 인터 페이스를 제공하기 위한 실시간 손 포즈 인식 방법을 제안한다. 먼저 깊이 카메라 입력영상에서 왼손과 오른손의 영역을 분할 및 잡음 보정 후 각 손 영역에 대하여 손 회전각과 손 중심점을 계산한다. 그리고 손 중심점에서 일정간격으로 원을 확장해 나가면서 손 경계 교차점의 중간 지점을 구해 손가락 관절점과 끝점을 검출한다. 마지막으로 앞서 구한 손 정보와 이전 프레임의 손 모델간의 매칭을 수행하여 손 포즈를 인식한 후 다음 프레임을 위하여 손 모델을 갱신한다. 본 방법은 연속된 프레임간의 시간 일관성을 이용하여 이전 프레임의 손 모델 정보를 통하여 은닉된 손가락의 예측이 가능하다. 양손을 사용하여 은닉된 손가락을 가진 다양한 손 포즈에 대해 실험한 결과 제안 방법은 평균 95% 이상의 정확도로 32 fps 이상의 성능을 보였다. 제안 방법은 프리젠테이션, 광고, 교육, 게임 등의 응용분야에서 비접촉식 입력 인터페이스로 사용될 수 있다.