• Title/Summary/Keyword: 손상 거동

Search Result 821, Processing Time 0.026 seconds

Unified Constitutive Modeling for Low Temperature Austenitic Stainless Steel (저온용 스테인레스강의 통합 구성방정식)

  • Yoo, Seong-Won;Park, Woong-Sup;Lee, Jae-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.504-507
    • /
    • 2010
  • 본 논문에서는 저온용 오스테나이트계 스테인리스강(ASS)의 온도 및 변형률 속도의 영향을 고려한 통합 구성 방정식 및 손상 모델을 제안하였다. 저온 영역에서, 304L ASS의 온도 및 변형률 속도별 인장 실험을 시행하였다. 그 결과, 변형 유기 마르텐사이트 상변태에 의해 상변태 유기 소성(TRIP)이 저온에서 현저히 나타났으며 온도 및 변형률 속도의 영향이 지대하였다. 실험 결과를 바탕으로 ASS의 저온 거동 및 특성을 규명하여 수치 모델에 반영하였다. 저온에서 일어나는 2차 경화 현상을 표현하기 위해, Bodner/Partom 점소성 구성 방정식을 수정하고 Tomita/Iwamoto 변형 유기 상변태 모델을 구성 방정식에 적용시켰다. 저온 연성 파단 현상을 표현하기 위해, Bodner/Chan 손상모델을 수정하여 접목시켰다. 제안된 모델을 유한요소 프로그램에 탑재시키고, 온도 및 변형률 속도 의존 재료 정수를 결정하였다. 저온 영역에서, 온도 및 변형률 속도별 재료 거동을 시뮬레이션하고 이를 실험 결과와 비교 및 검증하였다.

  • PDF

Analysis of Response Change of Structure due to Tunnel Excavation Conditions in Sand Ground (모래지반에서 터널 굴착조건들을 반영한 상부 블록구조물의 거동변화 분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1541-1549
    • /
    • 2013
  • This study investigates the response of structures to tunnelling-induced ground movements in sand ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), ground condition (loose sand and dense sand). Four-story block-bearing structures have been used because the structueres can easily be characterized of the extent of dmages with crack size and distribution. Numerical parametric studies have been used to investigae of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and ground condition and provided as a relationship chart. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in sand ground.

Micromechanics-based Analysis on Tensile Behavior of the Sprayed FRP Composites with Chopped Glass Fibers (유리단섬유로 보강된 분사식 섬유보강 복합재료의 인장거동에 관한 미세역학 기반 해석)

  • Yang, Beom-Joo;Ha, Seong-Kook;Lee, Haeng-Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.211-217
    • /
    • 2012
  • In this paper, experimental tests and theoretical studies were carried out to evaluate the tensile behavior of the sprayed FRP composite with chopped glass fiber. For this, a series of tensile strength tests with various strain rates were conducted on the specimens of the matrix and sprayed FRP composite. Sprayed FRP composite contained chopped glass fibers with fiber length of 15mm and a specific volume fraction of fibers of 25 %. An inverse simulation was conducted to simulate the strain rate sensitivity based on the present experimental data of the epoxy resin. The simulated viscosity value is adapted to the micromechanics-based viscoelastic damage model(Yang et al., 2012), and the overall tensile behavior of sprayed FRP composites is predicted. It was seen from the comparative study between present experimental data and predication results that the proposed methodology can be used to predict the viscoelastic behavior of the sprayed FRP composite.

Microstructure and annealing effect on fracture behavior in the dental glass-infiltrated alumina (치아용 유리침윤 알루미나에서 파괴거동에 미치는 미세구조 및 어닐링 효과)

  • 정종원;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.330-336
    • /
    • 2000
  • Effects of microstructure and indentation stress on fracture behavior of glass-infiltrated alumina composite for dental restorative application were investigated by the Hertzian and Vickers indentation method. Indentation stress-strain curve of glass-infiltrated alumina has showed the quasi-plastic behavior - deviation from linearity at high stress and the classical Hertzian cone crack, which could be confirmed the subsurface damage micrographs using bonded-interface specimen technique. The indentation stress-strain curves for the starting preforms are strongly dependent on porosity and microstructure of the preforms. On the other hand, the curves for the infiltrated composites are relatively insensitive to these factors. The failure of composite is originated at quasi-plastic deformation region. Damage and fracture behavior due to Hertzian stress field is theoretically examined, so that the indentation stress field plays a great role in material degradation. After Hertzian indentation annealing processing changes fracture behavior of alumina composite, so that stress field in material is healed through annealing.

  • PDF

A Study on the Seismic Evaluation of Steel Piers by Earthquake Response Characterisitcs (지진응답특성에 의한 강재교각의 내진성 평가에 관한 연구)

  • 권영록;손영호;최광규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.45-53
    • /
    • 2000
  • 강재 교각을 갖는 고가교량은 상부구조가 매우 큰 질량을 갖는 거대구조가 되고 규모가 큰 지진운동 하에서 대단히 큰 관성력을 받게 된다. 따라서 탄소성 동적응답 해석에 의해서 강재 교각의 지진거동을 파악하는 것이 필요하다 . 본 연구에서는, 탄소성 동적응답해석을 위한 합리적인 수치해석방법을 제시하고 이를 바탕으로 강재 교각에 대한 내진성 평가를 수행한다. 1995년 고베 지진 시 손상을 받은 강재 교각과 그 이후 재구축된 교각을 모델로 해서 국부좌굴 이전 소성화의 영향만을 고려한 강재 교각의 지진 거동을 파악한다. 입력지진파는 고베 지진시 관측된 Takatori 지진파이고 이를 가속도 진폭 조정하여 사용한다.

  • PDF

Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes (나노입자 코팅 CFRP의 모의 낙뢰 충격손상 후 압축시험에서의 음향방출 거동)

  • Shin, Jae-Ha;Kwon, Oh-Yang;Seo, Seong-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.62-67
    • /
    • 2011
  • Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10~40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

Evaluation of excavation damage zone during TBM excavation - A large deformation FE analysis study (TBM 굴착으로 인한 굴착손상영역 범위 추정 - 대변형 수치해석 연구)

  • Seheon Kim;Dohyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Analyzing the tunnel excavation behavior and its effect on the surrounding ground involves large deformation behavior. Therefore, in order to properly simulate the tunnel excavation process and rigorously investigate the actual effect of excavation on surrounding ground and tunnel structure large deformation analysis method is required. In this study, two major numerical approaches capable of considering large deformations behavior were applied to investigate the effect of tunnel boring machine excavation on the surrounding ground: coupled Eulerian-Lagrangian (CEL) and the automatic remeshing (AR) method. Relative performance of both approaches was evaluated through the ground response due to TBM excavation. The ground response will be quantified by estimating the range of the excavation damaged zone (EDZ). By comparing the results, the range of the EDZ will be suggested on the vertical and horizontal direction along the TBM excavation surface. Based on the computed results, it was found that the size of EDZ around the excavation surface and the tendencies was in good agreement among the two approaches. Numerical results clearly show that the size of the EDZ around the tunnel tends to be larger for rock with higher RMR rating. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional due to higher confinement stress around the excavation surface.

Damage Assessment of Buried Pipelines due to Tunneling-Induced Ground Movements (터널시공에 따른 지반거동에 의한 지중매설관 손상 평가)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.71-86
    • /
    • 2001
  • 본 고에서는 도심지 터널의 과학적인 설계/시공을 위한 요소기술 확보의 일환으로 기존의 연구자들이 제시한 손상평가 기법을 토대로 터널굴착에 따른 지중매설관 손상여부의 예비평가를 위한 평가기법을 제시하였다. 제시된 기법을 토대로 다양한 경우에 대한 매개변수 연구를 수행한 결과 지반침하곡선의 경사 및 곡률 등 침하곡선의 제반특성에 기반을 둔 본 연구에서 개발된 손상평가기법의 평가결과는 변곡점의 위치에 많은 영향을 받는 것으로 나타났으며, 따라서 현장 특유의 지반특성 및 시공조건이 반영된 변곡점 산정식의 개발을 위한 지속적인 연구가 필요한 것으로 판단된다. 아울러서 터널심도가 터널직경의 2.5배 이하인 경우 손상도가 현저히 증가하며, 전반적으로 관의 재질이나 조인트의 형식에 관계없이 관체의 인장변형률이 손상여부를 결정짓는 인자인 것으로 나타났다. 본 연구에서 얻어진 결과를 종합하여 터널과 매설관의 상대적 위치 및 지반손실량에 따라 매설관의 손상정도를 정량적으로 평가할 수 있는 설계도표를 제시하였다.

  • PDF

A Study on Microscopic Damage Behavior of Carbon Fiber Sheet Reinforced Concrete using Acoustic Emission Technique (음향방출 기법을 이용한 탄소섬유시트강화 콘크리트의 미시적 손상 거동에 관한 연구)

  • 이진경;이준현;정성륜
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.62-70
    • /
    • 1999
  • It was well recognized that damages associated mainly with the aging of civil infrastructrues were one of very serious problems for assurance of safety and reliability. In recent, carbon fiber sheet(CFS) has been widely used for reinforcement and rehabitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bend test has been carried out to understand the damage progress and micro-failure mechanism of CFS reinforced concretes. For these purposes, four kinds of specimens are used, that is, concrete, respectively. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and failure mechanism of specimens. In addititon, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for four types of these specimens.

  • PDF

Seismic Behavior of 3-Story Steel Frame Structures Subjected to Ground Motions (지진동을 받는 3층 강재 프레임 구조물의 지진 거동)

  • Hu, Jongwan;Cha, Youngwook
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.383-394
    • /
    • 2016
  • This study is intended to predict the seismic behavior of the down-scaled 3-story steel frame structures subjected to the real ground motion, and evaluate their structural damage through advanced finite element (FE) analysis results. The FE frame models are designed by considering the effect of the soft story. In addition, the effect of structural asymmetry is also taken into consideration during the nonlinear dynamic analyses. After observing the analysis results, it is reconfirmed that the damage of the steel frame building under the ground motion should be governed by the soft story column rather than the structural mass asymmetry.