원자력 구조물, 항공기 구조물 등의 손상은 각 구조물의 손상에 의해서 발생하는 충격파의 탑지로서 손상의 위치를 탐지 할 수가 있다. 이러한 손상의 위치를 탐지하기 위한 역변환 문제는 오랜 기간 동안 중요한 연구의 과제가 되고 있다. 본 연구에서는 신경망 회로 기술을 이용하여 이러한 충격파를 탐지하고자 하며, 이 기술의 검증을 위해서 평판에서 실험을 실행하여 검증 하였다.
항공기 구조물 표면에 발생하는 외부 충격은 크랙과 같은 손상을 발생시킬 수 있으며 이는 차후 큰 결함을 야기하기 때문에 충격과 손상을 탐지하고 위치를 추정하는 것은 구조 안정성 모니터링에 있어 중요한 부분이다. 본 연구에서는 능동, 수동 센싱기법을 조합한 L-형상 압전체 센서 배열을 사용하여 충격과 손상을 탐지할 수 있는 기법을 개발하였다. 수동 센싱기법으로 1개 센서군 당 3개의 센서를 L-형상으로 배치하여 충격 발생 각도를 추정하고 2개의 센서군을 사용하여 충격위치를 탐지하는 방법을 도입하였다. 이 수동 센싱기법을 유도초음파 기반의 능동 센싱기법에 확대 적용하여 동일한 압전소자로 충격 탐지와 더불어 손상을 탐지할 수 있는 방법을 개발하였다. 이 기법은 방향에 따른 파동의 속도 변화와 같은 구조물에 대한 정보 없이도 위치 추정이 가능하여 비등방성 구조 내에서도 정확한 충격 및 손상 위치 정보를 얻을 수 있다. 개발된 기법을 날개 형태 구조물 및 CFRP 판에 적용하여 실험적으로 정확한 충격 및 손상 위치를 추정할 수 있음을 증명하였다.
본 연구는 최적설계에 사용되는 역섭동법을 구조물의 손상탐지에 적용하였다. 이 방법은 손상의 위치를 정확하게 탐지하기 위하여 미지수보다 많은 수의 구속조건이 필요하므로, 최적설계와는 달리 비선형 회소자승법을 수치기법에 사용한다. 한편 손상탐지의 경우, 모든 자유도의 응답이 측정가능한 것은 아니며 제한된 수의 센서에서 부분적인 진동모드만 측정할 수 있다. 이처럼 부분적인 정보를 사용하여, 손상진단을 성공적으로 수행하기 위해서는 사용될 센서의 수와 위치를 결정하는 연구가 매우 중요한다. 본 논문에서는 센서의 개수가 결정되었을 때, 손상탐지에 적합한 센서 위치의 선정방법에 관하여 연구하였다. 이러한 연구의 결과로 순차적 소거법이 역섭동법을 이용한 손상탐지에 가장 적합한 센서위치의 선정방법임을 수치 예에서 확인하였다.
본 연구에서는 유전 알고리즘(GA, Genetic Algorithm)을 이용하여 트러스 구조물에서 부재의 특성변화에 의한 손상탐지를 확인하였다. 구조물의 손상 탐지를 위하여 트러스 구조물을 모델링하여 특정 부재의 탄성계수를 감소시킴으로써 구조물의 손상을 결정하였다. 트러스 구조물의 해석은 특정 하중이 가하여졌을 경우의 정적 해석을 통하여 수행하였으며, 구조물의 손상 위치와 정도는 손상을 입기전의 구조물과 손상을 입은 구조물의 각 부재 변형률의 차이를 마이크로 유전 알고리즘을 통하여 비교 분석하여 탐지하였다. 본 연구에서는 트러스 구조물의 수치 해석 예제를 모델링하여 마이크로 유전 알고리즘을 이용하여 손상 탐지를 수행하였으며, 이를 통하여 구조물의 손상 위치와 정도가 탐지되는 것을 확인하였다.
정적 손상 탐지방법은 동적 방법과 비교해서 실제 적용하기에 단순하고 효과적이다. 본 논문에서는 정적데이타를 이용하는 방법으로 변위, 처짐각, 곡률을 이용한 강박스 교량의 손상 탐지 방법에 대해서 연구하였다. 변위는 유한요소 해석에서 얻고, 처짐각과 곡률은 변위로부터 중앙차분법을 이용하여 구하였다. 손상되지 않은 경우와 손상된 경우의 응답차의 절대값으로 손상의 위치를 탐지하였다. 손상은 박스의 모서리 균열을 singular 요소를 사용하여 직접 모델링하여, 실질적인 거동을 분석하였다. 해석 결과 응답차의 절대값으로 손상의 위치를 탐지하기에 매우 효과적이었다.
본 연구는 수중 강판에 존재하는 결함탐지를 위한 탄성파 유한요소 시뮬레이션이다. 일반적으로 수중 강판은 외부의 물로 인하여 결함의 탐지가 어렵다. 이러한 수중 강판의 결함탐지에는 잠수부가 수중 강판 표면에 비파괴 검사 장비를 활용하여 결함을 탐지하는 경우가 많으며 잠수부의 경험과 많은 시간이 소요되는 단점이 있다. 본 연구에서는 수중강판의 표면이 아닌 수중에서 탄성파를 발생시켰을 경우 수중 강판의 결함탐지 유한요소 시뮬레이션을 이용하여 손상의 위치와 손상의 크기에 따라 발생하는 응답을 알아보았다. 강판의 상하부에 기계적인 손상이 발생한 경우를 손상 시나리오로 가정하고 해석을 수행하였다. 손상이 없는 경우의 응답을 기준으로 강판의 상부와 하부에 기계적인 손상이 있는 경우에 발생하는 응답을 비교하였다. 동적유한요소 프로그램인 ANSYS/LS-DYNA를 사용하여 결함탐지 해석을 수행하였다. 결과적으로 손상의 종류에 따라 응답신호의 진폭 감소가 나타났으며 손상의 크기가 커질수록 진폭 감소가 커지는 결과를 나타내었다.
인공신경망(Artificial Neural Network)을 이용하여 RC Mock-up 구조물의 손상위치 및 손상정도를 단계적으로 추정하였다. 대상 구조물은 가진실험을 통하여 구조물의 응답을 취득하고 구조물식별기법(Structural System Identification)을 통하여 구조물의 동특성을 찾았다. 유한요소해석프로그램을 사용하여 동특성이 계측치와 가장 유사한 기본해석모델을 만든 후 이 기본해석모델을 이용하여 학습데이터를 생성하였다. 기존 인공신경망을 이용한 손상탐지를 개선하고자 본 연구에서는 인공신경망 학습데이터를 분석하였고 효과적인 손상탐지를 위하여 학습데이터를 가공하였다. 가공된 학습데이터를 사용하여 단계별 손상탐지를 실시하였고 기존 손상탐지 방법보다 좋은 결과를 유도하였다.
본 논문은 복합재 패널에서 압전 작동기를 사용하여 탄성파를 생성하고, 손상에서의 반사된 신호를 압전 감지기에서 탐지하여 손상위치를 추정할 수 있는 알고리즘을 개발하였다. 손상이 없는 신호와 손상이 있는 신호를 비교하여 손상신호를 추정하는 진단적 접근방법을 사용하였다. 신호 상관관계를 이용하여 탄성파의 군속도를 계산하고 압전기 위치정보를 이용하여 손상정보를 추출하였다. 하지만 탄성파의 비선형 특성으로 인해, 손상정보는 다양한 신호의 조합으로 구성되기 때문에, 손상위치를 명확히 구별하기 어렵다. 이에 본 논문에서는 손상에서 반사된 신호정보를 신호 도달거리의 면적으로 변환해서 손상의 중심위치를 찾는 누적함수 특성벡터 알고리즘(CSFV, cumulative summation feature vector)을 새롭게 제안하고, 특성벡터를 손상지수와의 곱으로 표현하는 가시화 기법을 적용하였다. 또한 복합재 패널에서 실험검증을 수행하고, 기존의 알고리즘과의 비교를 통해 제안된 알고리즘이 정확도 높게 손상위치를 검출할 수 있음을 보였다.
구조물의 건전도를 평가하기 위해 상시 구조물 계측을 이용한 Structural Health Monitoring (SHM) 시스템을 적용하게 된다. SHM 시스템의 궁극적 목적은 계측된 데이터를 이용하여 구조물의 손상위치 및 손상정도를 분석하여 거주자에게 유지관리정보와 대처요령 신속하게 제공하는 것이다. 따라서 본 연구에서는 구조물의 손상탐지를 위해 인공신경망(Artificial Neural Network)을 도입한 알고리즘을 수립하고, 이를 3층 실대 RC Mock-up 구조물에 적용하여 성능을 평가하였다. 먼저 인공신경망의 학습을 위해 구조해석 프로그램을 이용하여 구조물의 손상에 따른 동적특성 변화 데이터베이스를 구축하였다. 그리고 학습된 인공망에 실제 구조물에서 추출한 동특성의 변화를 입력하여 손상탐지를 실시하였다. 이를 통해 인공신경망의 학습방법, 학습데이터의 정규화 방법 등을 규명하고 인공신경망을 이용한 손상탐지의 효과를 분석하였다.
국내의 노후 철도교량이 증가함에 따라 노후화로 인한 유지관리비가 점점 증가하고 있으며, 지속적인 관리가 더욱 더 중요해지고 있다. 하지만 관리해야하는 노후 시설물은 증가하지만, 노후 시설물을 점검 및 진단을 할 수 있는 전문 인력은 부족해지고 있다. 이러한 문제를 해결하기 위해 본 연구는 정적 변형률 응답 데이터를 적용하여 AI 기술의 머신러닝 기법으로 구조물의 국부적인 손상을 탐지하는 개선된 학습모델을 제시하고자 한다. 손상탐지 머신러닝 학습 모델을 구성하기 위해 우선 무도상 철도 판형교의 설계도면을 참고하여 교량의 해석모델을 설정하였으며, 설정된 해석모델로 손상시나리오에 따른 정적변형률 데이터를 추출하여 통계적 기법을 이용해 교량의 신뢰도 기반의 Local 손상 지수를 제시하였다. 손상 탐지는 손상 유무 탐지, 크기 탐지, 위치 탐지 3단계의 과정을 수행하여 손상 크기 탐지에서 선형 회귀 모델을 추가로 고려해 임의의 손상을 탐지하였으며, 최종적으로 손상 탐지 머신러닝 분류 학습 모델과 회귀 모델을 이용한 임의의 손상 위치를 추정 및 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.