• Title/Summary/Keyword: 손상기법

Search Result 1,130, Processing Time 0.033 seconds

Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach (선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구)

  • Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.184-192
    • /
    • 2022
  • Valve internal leakage is caused by damage to the internal parts of the valve, resulting in accidents and shutdowns of the piping system. This study investigated the possibility of a real-time leak detection method using the acoustic emission (AE) signal generated from the piping system during the internal leakage of a butterfly valve. Datasets of raw time-domain AE signals were collected and postprocessed for each operation mode of the valve in a systematic manner to develop a data-driven model for the detection and classification of internal leakage, by applying machine learning algorithms. The aim of this study was to determine whether it is possible to treat leak detection as a classification problem by applying two classification algorithms: support vector machine (SVM) and convolutional neural network (CNN). The results showed different performances for the algorithms and datasets used. The SVM-based binary classification models, based on feature extraction of data, achieved an overall accuracy of 83% to 90%, while in the case of a multiple classification model, the accuracy was reduced to 66%. By contrast, the CNN-based classification model achieved an accuracy of 99.85%, which is superior to those of any other models based on the SVM algorithm. The results revealed that the SVM classification model requires effective feature extraction of the AE signals to improve the accuracy of multi-class classification. Moreover, the CNN-based classification can be a promising approach to detect both leakage and valve opening as long as the performance of the processor does not degrade.

Conservation Treatment and Scientific Investigation of Daehye Bogakseonsaseo (Letters of Master Bogak) in the Goryeo Dynasty (고려시대 대혜보각선사서의 보존처리 및 과학적 조사)

  • Jang Yeonhee
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.47-64
    • /
    • 2023
  • Daehye Bogakseonsaseo (Letters of Master Bogak) in the possession of the National Museum of Korea is a Goryeo-era book produced in 1387, which was acquired in 2005 in a state of severe general damage. Subsequently, its production techniques and materials were examined using bibliographical characteristics and scientific analysis, based on which an overall conservation treatment was carried out. Janghwang(mounting) in bibliographical characteristics is a five-hole-stitch binding (五針眼線裝本), a single-lined rectangular box (四周單邊), and no column lines. The conservation treatment was examined in two aspects: the basic form and the conservation treatment process. The book is composed of the outer cover, original cover, end paper, and inner paper of 0.04-0.07mm thick, which is significantly thinner than general book paper. The conservation treatment was applied after the entire book was disassembled, based on the assessment that both the cover and the inner sheets of paper were in a dire condition due to deterioration. The conservation treatment comprised of the process of disassembly, cleaning, reinforcement of defective parts, scanning, and binding, with a paulownia box made for its storage. At the time of disassembly, samples were made for the inner sheets and the book string in order to conduct fiber identification. The fibers were identified using Safranin and C-stains. Safranin staining identified a thick fiber wall, in addition to cross-marking, dislocation, and transparent membranes. C-stain staining identified the fiber as mulberry, given the dark red residue. The book strap has a flat, circular cross-section, and was identified as cotton fiber, since a lumen was observed in the center.

Development of Flow Loop System to Evaluate the Performance of ESP in Unconventional Oil and Gas Wells (비전통 유·가스정에서 ESP 성능 평가를 위한 Flow Loop 시스템 개발)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.7-15
    • /
    • 2023
  • The electric submersible pump (ESP) has been operating in production wells around the world because of its high applicability and operational efficiency among artificial lift techniques. When operating an ESP in a reservoir, variables such as temperature, pressure, gas/oil ratio, and flow rate are factors that affect ESP performance. In particular, free gas in the production fluid is a major factor that reduces the life and operational efficiency of ESP. This study presents the flow loop system which can implement the performance and damage tests of ESP considering field operating conditions to quantitatively analyze the variables that affect ESP performance. The developed apparatus in an integrated system that can diagnose the failure and causes of ESP, and detect leak of tubing by linking ESP and tubing as one system. In this study, the flow conditions for stable operation of ESP were identified through single phase and two phase flow experiments related to evaluation for the performance of ESP. The results provide the basic data to develop the failure prediction and diagnosis program of ESP, and are expected to be used for real-time monitoring for optimal operating conditions and failure diagnosis for ESP operation.

Estimation of Perceived Curve Radius Considering Visual Distortion at Curve Sections (곡선부 시각왜곡현상을 고려한 인지곡선반경 산정에 관한 연구)

  • Shin, Jae-Man;Park, Je-Jin;Son, Sang-Ho;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.395-402
    • /
    • 2010
  • The seriousness of a traffic accident appears relatively higher on the curve sections compared with the straight sections due to a change in speed caused by a change in the driver's sight. In particular, the visual distortion phenomenon, one of the dangerous factors taking place on the curve sections, appears different according to the road's geometric design. Although it is a genuinely principal design factor which should be necessarily considered in designing a road, the previous researches on establishing the design standards for it have been insufficiently conducted. As a result, the establishment of the road design standards for the curve sections considering the sight distortion phenomenon is desperately required. This research examined the previous researches on the driver's behaviors, the driver's sight characteristics and the perceived curve radius on the curve sections, and developed the theoretical model of perceived curve radius to which a mathematical technique is applied in consideration of the visual distortion phenomenon on the two-lane curve sections in a local area. In addition, after the theoretical visual distortion was calculated on the basis of the theoretical model of perceived curve radius, the range of error on the theoretical recognition radius model formula was verified through comparing it with the previous researches' experiential visual distortion level and analyzing both of them. As a result, it was observed that as the curve radius practically increases in the theoretical recognition curve radius, the range of error tends to go down, which reflects well the characteristics of the curve sections on the road. Based on this research, it is expected that this research will be helpful to eliminate the safety defects when designing the curve sections and contribute to develop the road design standards considering human factors in the future.

Shear Force Variation of Stiffening Girder caused by Vibration of Stay Cable (사장 케이블 진동에 의한 보강형의 전단력 변화)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.1-8
    • /
    • 2009
  • Stay cable is easily exposed to vibration induced rainy wind effects. There are some problems for not only unexpected vibration but also well-known vibration. An outbreak of displacement by the said effects brings damages such as over-tension of cables and barriers, fatigue of anchorages and dampers, and additional shear force variation of stiffening girders. This study suggests analytic methodology for dynamic tension variation of cables and shear force variation of stiffening girders. Additionally this study announces with dynamic problems for cable stayed bridge briefly. To realize this subject, we divide restoring force into chord component and normal component and then make up the differential equations which can satisfy physical phenomenon for each component. Finally we apply adequate functions such as sinusoidal and parabola in order to reduce these differential equations. Therefore we can meet with good results through a series of above process. As a remarkable result, CIP recommendations (2002) give inadequate solution with over 10% error. However it gives very good solution if parts of our study are reflected at the said recommendations. The fact means that CIP recommendations (2002) well-known as international standard of stay cables are not even concern about this subject yet. For verification of this study, F.E. analysis using E.C.C. with external forces was fulfilled, and the accuracy and conciseness of this study were shown.

A Study on Hazards to Pilotage Safety in a Pilotage Area in the Busan Gamcheon Port (부산 감천항 도선구의 도선안전위해요소에 관한 연구)

  • Sei-hun Kim;Bong-kwon Choi;Ji-ung Choi;Tae-Seok Song;Young-soo Park;Dae-won Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.341-349
    • /
    • 2023
  • Gamcheon Port, which is one of three major harbors in the Port of Busan, is being operated to load, discharge and transport a wide range of cargoes, including general cargo, fisheries, steel products, cement, etc,. The harbor, designated as a compulsory pilotage area, provides pilotage services in compliance with relevant laws and regulations for arrival and departure of vessels in the Gamcheon Port area. Some academic research on the marine traffic environment in Gamcheon Port has been conducted. However, the pilotage environment and hazards to pilotage safety in the port have yet to be studied. Therefore, in this research, the pilotage environment and hazards to pilotage safety were identified, and it was confirmed that there are hazards to pilotage safety, such as vessels installed poor facilities including damaged pilot boarding arrangements, vessels blocking pilot's view by her structures and fishing nets, vessels unable to communicate in English, vessels not following VTS's order. The hazards to pilotage safety were also stratified, and the importance of the hazards was verified in accordance with a survey based on Analytic Hierachy P rocess(AHP) for Busan Harbor pilots, and safety measures to secure pilotage safety were examined to secure the safety of vessels calling Gamcheon Port.

Anti-inflammatory effect of Althaea rosea L. Callus extract by applying biorenovation (생물전환 기법을 적용한 접시꽃 callus 추출물의 항염증 활성)

  • Yeon-Su Koo;Tae-Jin Park;Jung-Hwan Kim;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.39-45
    • /
    • 2023
  • Biorenovation is a biotransformation method that converts the structure of chemical compounds and natural product through biocatalytic metabolism of microorganism and could enhance biological effectiveness and mitigate cytotoxicity compared to its substrates. Althaea rosea L. has been used as oriental medicine and is known for physiological efficacies such as antiurolithiatic, anti-inflammatory, and anti-cancer activities. A. rosea L. callus, the plant tissue grown to protect its wound, has been reported to have antioxidant and whitening effects. However, mechanisms of its other activity such as inflammation have not yet been investigated. In this study, we extracted A. rosea L. callus (AR) and produced biorenovated AR (ARBR), and then analyzed anti-inflammatory effect in Lipopolysaccharide-induced RAW 264.7 macrophage at 50, 100, 200 ㎍/mL of ARBR. As a result of inhibition test of nitric oxide production, it was found that ARBR was superior to AR without apparent toxicity. Furthermore, ARBR significantly inhibited production of prostaglandin E2, inducible nitric oxide synthase, cyclooxygenase-2 and pro-inflammatory cytokines including Tumor necrosis factor-α, Interleukin-6, Interleukin-1β in a concentration-dependent manner. In conclusion, we suggest that ARBR could regulate the excessive inflammatory response to an appropriate level and be a promising material for functional cosmetics and pharmaceuticals.

MR T2 Map Technique: How to Assess Changes in Cartilage of Patients with Osteoarthritis of the Knee (MR T2 Map 기법을 이용한 슬관절염 환자의 연골 변화 평가)

  • Cho, Jae-Hwan;Park, Cheol-Soo;Lee, Sun-Yeob;Kim, Bo-Hui
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.298-307
    • /
    • 2009
  • By using the MR T2 map technique, this study intends, first, to measure the change of T2 values of cartilage between healthy people and patients with osteoarthritis and, second, to assess the form and the damage of cartilage in the knee-joint, through which this study would consider the utility of the T2 map technique. Thirty healthy people were selected based on their clinical history and current status and another thirty patients with osteoarthritis of the knee who were screened by simple X-ray from November 2007 to December 2008 were selected. Their T2 Spin Echo (SE hereafter) images for the cartilage of the knee joint were collected by using the T2 SE sequence, one of the multi-echo methods (TR: 1,000 ms; TE values: 6.5, 13, 19.5, 26, 32.5. 40, 45.5, 52). Based on these images, the changes in the signal intensity (SI hereafter) for each section of the cartilage of the knee joint were measured, which yielded average values of T2 through the Origin 7.0 Professional (Northampton, MA 01060 USA). With these T2s, the independent samples T-test was performed by SPSS Window version 12.0 to run the quantitative analysis and to test the statistical significance between the healthy group and the patient group. Closely looking at T2 values for each anterior and lateral articular cartilage of the sagittal plane and the coronal plane, in the sagittal plane, the average T2 of the femoral cartilage in the patient group with arthritis of the knee ($42.22{\pm}2.91$) was higher than the average T2 of the healthy group ($36.26{\pm}5.01$). Also, the average T2 of the tibial cartilage in the patient group ($43.83{\pm}1.43$) was higher than the average T2 in the healthy group ($36.45{\pm}3.15$). In the case of the coronal plane, the average T2 of the medial femoral cartilage in the patient group ($45.65{\pm}7.10$) was higher than the healthy group ($36.49{\pm}8.41$) and so did the average T2 of the anterior tibial cartilage (i.e., $44.46{\pm}3.44$ for the patient group vs. $37.61{\pm}1.97$ for the healthy group). As for the lateral femoral cartilage in the coronal plane, the patient group displayed the higher T2 ($43.41{\pm}4.99$) than the healthy group did ($37.64{\pm}4.02$) and this tendency was similar in the lateral tibial cartilage (i.e., $43.78{\pm}8.08$ for the patient group vs. $36.62{\pm}7.81$ for the healthy group). Along with the morphological MR imaging technique previously used, the T2 map technique seems to help patients with cartilage problems, in particular, those with the arthritis of the knee for early diagnosis by quantitatively analyzing the structural and functional changes of the cartilage.

  • PDF

Hybrid Two-Dimensional Proton Spectroscopic Imaging of Pediatric Brain: Clinical Application (소아 뇌에서의 혼성 이차원 양성자자기공명분광법의 임상적 응용)

  • Sung Won Youn;Sang Kwon Lee;Yongmin Chang;No Hyuck Park;Jong Min Lee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.64-72
    • /
    • 2002
  • Purpose : To introduce and demonstrate the advantages of the new hybrid two-dimensional (2D) proton spectroscopic imaging (SI) over the single voxel spectroscopy (SVS) and conventional 2D SI in the clinical application of spectroscopy for pediatric cerebral disease. Materials and Methods : Eighty-one hybrid 2D proton spectroscopic imaging was performed in 79 children (36 normal infants and children, 10 with hypoxic-ischemic injury, 20 with toxic-metabolic encephalopathy, seven with brain tumor, three with meningoencephalitis, one with neurofibromatosis, one with Sturge-Weber syndrome and one with lissencephaly) ranging in age from the third day of life to 15 years. In adult volunteers (n=5), all three techniques including hybrid 2D proton SI, SVS using PRESS sequence, and conventional 2D proton SI were performed. Both hybrid 2D proton SI and SVS using PRESS sequence were performed in clinical cases (n=). All measurements were performed with a 1.5-T scanner using standard head quadrature coil. The 16$\times$16 phase encoding steps were set on variable field of view (FOV) depending on the size of the brain. The hybrid volume of interest inside FOV was set as $75{\times}75{\times}15{\;}\textrm{mm}^3$ or smaller to get rid of unwanted fat signal. Point-resolved spectroscopy (TR/TE=1,500 msec/135 or 270msec) was employed with standard chemical shift selective saturation (CHESSI pulses for water suppression. The acquisition time and spectral quality of hybrid 2D proton SI were compared with those of SVS and conventional 2D proton SI. Results : The hybrid 2D proton SI was successfully conducted upon all patients.

  • PDF

Development of a Ranging Inspection Technique in a Sodium-cooled Fast Reactor Using a Plate-type Ultrasonic Waveguide Sensor (판형 웨이브가이드 초음파 센서를 이용한 소듐냉각고속로 원격주사 검사기법 개발)

  • Kim, Hoe Woong;Kim, Sang Hwal;Han, Jae Won;Joo, Young Sang;Park, Chang Gyu;Kim, Jong Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2015
  • In a sodium-cooled fast reactor, which is a Generation-IV reactor, refueling is conducted by rotating, but not opening, the reactor head to prevent a reaction between the sodium, water and air. Therefore, an inspection technique that checks for the presence of any obstacles between the reactor core and the upper internal structure, which could disturb the rotation of the reactor head, is essential prior to the refueling of a sodium-cooled fast reactor. To this end, an ultrasound-based inspection technique should be employed because the opacity of the sodium prevents conventional optical inspection techniques from being applied to the monitoring of obstacles. In this study, a ranging inspection technique using a plate-type ultrasonic waveguide sensor was developed to monitor the presence of any obstacles between the reactor core and the upper internal structure in the opaque sodium. Because the waveguide sensor installs an ultrasonic transducer in a relatively cold region and transmits the ultrasonic waves into the hot radioactive liquid sodium through a long waveguide, it offers better reliability and is less susceptible to thermal or radiation damage. A 10 m horizontal beam waveguide sensor capable of radiating an ultrasonic wave horizontally was developed, and beam profile measurements and basic experiments were carried out to investigate the characteristics of the developed sensor. The beam width and propagation distance of the ultrasonic wave radiated from the sensor were assessed based on the experimental results. Finally, a feasibility test using cylindrical targets (corresponding to the shape of possible obstacles) was also conducted to evaluate the applicability of the developed ranging inspection technique to actual applications.