• Title/Summary/Keyword: 속채움 재료

Search Result 12, Processing Time 0.017 seconds

Study on Correlation between Compressive Strength and Compressional Wave Velocity for CLSM According to Curing Time (양생시간에 따른 CLSM의 압축강도 및 압축파 속도 상관성 연구)

  • Han, Woojin;Lee, Jongsub;Cho, Samdeok;Kim, Jinhwan;Byun, Yonghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.5-11
    • /
    • 2015
  • The development of Controlled Low Strength Material (CLSM), which is a highly flowable material, has been performed for the application of backfill. The objective of this study is to compare the compressive strength and compressive wave velocity of CLSM according to the curing time. To investigate the characteristics of the CLSM consisting of sand, silt, water, flyash, and CSA cement, uniaxial compression test and flow test were carried out. For the measurement of compressional waves, a cell and a couple of transducers were used. The test results show that the compressive strength increases with the curing time, while the increment of compressive strength decreases with the curing time. In addition, the compressive wave velocity increases with the curing time, and the correlation between the compressive wave velocity and compressive strength is similar to exponential function. This study suggests that the correlation between the compressive wave velocity and compressive strength may be effectively used for the estimation of compressive strength of the CLSM at early curing time.

Study on the Displacement of Crib Wall System (Crib Wall System 변위해석에 관한 연구)

  • Kim, Doo-Jun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.201-209
    • /
    • 2002
  • Crib wall system is one of segmental crib type wall. Crib walls are constructed from separate members with no bonds between them other than frictional. The wall units are divide into two main types termed headers and stretchers. The headers run from the front to the back of the wall, perpendicular to the wall face. The cells are created by forming a grid by stacking individual wall components known as headers and stretchers. The body of wall consists of a system of open cell which are filled with a granular material. The design of crib retaining wall is usually based on conventional design methods derived from Rankine and Coulomb theory so that is able to resist the thrust of soil behind it, because it may be assumed that the wall acts as a rigid body. However, deformation characteristics of crib walls cannot be assumed as monolithic. They consist of individual members which have been stacked to creat a three dimensional grid. Therefore, the segmental grid allows relative movement between the individual member within the wall. The three dimensional flexible grid leads to stress distribution by interaction behavior between soil and crib wall. Therefore, in this study, in order to analysis the trends of deflection of crib wall system, new numerical models based on the results of Brandl's full scale test are introduced for design concept.