본 연구에서는 사례기반 추론 기법을 대상으로 효율성과 효과성을 함께 증진시킬 수 있는 속성선정 방법을 개발하였다. 기본적으로, 본 연구에서 개발한 속성선정 방법은 기존에 개발된 단변량 분석 방법과 LVF 알고리즘을 통합하는 것이다. 먼저, 단변량 분석 방법 중 선택효과를 사용하여 전체 속성 중에서 예측력이 우수하다고 판단되는 일부분의 속성들을 추려낸다. 이 속성들로부터 생성해낼 수 있는 모든 가능한 부분집합을 생성해낸 후에, LVF 알고리즘을 이용하여 이 부분집합들이 가지는 불일치 비율을 평가함으로써 최종적으로 속성 부분집합을 선정한다. 본 연구에서 개발한 속성선정 방법을 UCI에서 제공하는 데이터 집합들에 적용하여 성능을 측정한 후, 기존 기법의 성능들과 비교한 결과, 본 연구에서 개발된 속성선정 방법이 선정된 속성의 개수도 만족할만하고 적중률도 향상되어서, 효율성과 효과성 모두의 측면에서 우수함을 보였다.
현실적으로 다속성 의사결정(Multi-Attribute Decision-Making:MADM)문제들은 대안과 속성의 수가 매우 많은 것이 보통이기 때문에 이것을 모두 합리적으로 고려하여 최적의 대안을 선정한다는 것은 매우 어려운 일이다. 지금까지 연구 개발된 기존의 수리적 방법들은 주어진 문제에 대한 제약을 가하여 최적해(optimal solution)를 구할 수 있지만 의사결정자들의 입장을 정확히 반영하지 못하는 경우가 대부분이며, 이를 개선하기 위한 기존의 대화형 접근방법은 고려해야 할 대안과 속성의 수가 많아지면 대안 간의 쌍비교등을 통하여 의사결정자가 제공해야 하는 정보의 양이 기하급수적으로 증가한다는 어려움과 함께 최적해가 보장되지 못하는 문제점이 있다. 따라서, 본 연구의 목적은 대안과 속성의 수가 매우 큰 의사결정상황 하에서 의사결정자가 중요하다고 생각하는 속성의 그룹부터 단계적으로 고려해 가면서 대안의 수를 점차적으로 감소시킬 수 있는 보다 효율적인 대화형 접근방법을 구축하는데 있다.
동일하거나 유사한 기능을 수행하는 소프트웨어 제품들 중에서 사용자 요구사항에 가장 적합한 제품을 결정하기 위하여 측정과 평가 및 선정을 실시하는 것을 매우 중요한 일이다. 이러한 소프트웨어 제품의 평가와 선정은 대량 구매시 객관성 확보를 위해 특히 중요하다. 소프트웨어 제품의 평가를 위한 절차는 평가 대상 제품의 속성 결정과 측정, 속성의 중요도에 따른 가중치 부여, 그리고 평가와 선정 모형을 통한 최적제품의 선정이나 우선순위의 결정이다. 본 연구에서는 이러한 절차에 따른 가중치 부여 방법으로는 계층적 분석과정을 이용하고, 제품의 평가와 선정 방법으로는 4개 보상모형과 7개 비보상모형, 그리고 4개의 DEA(Data Evelopment Analysis)모형을 종합적으로 설명한다. 또한 본 연구에서는 위의 15개 평가와 선정모형을 사용하여 Infoworld(Jan.1997)에서 발표한 '문서 작업흐름 관리' 소프트웨어 제품의 속성에 대한 측정결과를 가지고 모형별 적용 결과를 분석한다.
추천시스템은 일반적으로 협동적 필터링이라는 정보 필터링 기술을 사용한다. 협동적 필터링은 유사한 성향을 갖는 다른 고객들이 상품에 대해서 매긴 평가에 기반하기 때문에 고객에게 가장 적합한 유사 이웃들을 적절히 선정해 내는 것이 추천시스템의 예측의 질 향상을 위해서 필요하다. 본 논문에서는 다중 속성 정보를 기반으로 한 다단계 클러스터링을 통한 이웃선정 방법을 제안한다. 이 방법은 대규모 데이터 셋에서 탐색 공간을 줄이기 위해 클러스터링을 수행하여 적절한 이웃 고객들의 집합을 검색하여 추출한다. 이 때, 다중 속성 정보에 따라 단계적으로 클러스터링을 수행함으로써 보다 정제된 고객 집합을 구성할 수 있도록 한다. 본 논문에서는 고객 선호도와 위치 정보 및 아이템의 선호도와 위치 정보를 대표적인 속성 정보로 사용함으로써 모바일 환경에서 보다 정확한 추천이 이루어질 수 있도록 한다.
추천시스템은 일반적으로 협동적 필터링이라는 정보 필터링 기술을 사용한다. 협동적 필터링은 유사한 성향을 갖는 다른 고객들이 상품에 대해서 매긴 평가에 기반하기 때문에 고객에게 가장 적합한 유사 이웃들을 적절히 선정해 내는 것이 추천시스템의 예측의 질 향상을 위해서 필요하다. 본 논문에서는 속성 정보를 기반으로 한 다단계 클러스터링을 통한 이웃선정 방법을 제안한다. 이 방법은 대규모 데이터 셋에서 탐색 공간을 줄이기 위해 클러스터링을 수행하여 적절한 이웃 고객들의 집합을 추출한다. 이 때, 속성 정보에 따라 단계적으로 클러스터링을 수행함으로써 보다 정제된 고객집합을 구성할 수 있도록 한다. 본 논문에서는 고객 선호도와 위치 정보를 대표적인 속성 정보로 사용함으로써 모바일 환경에서 보다 정확한 추천이 이루어질 수 있도록 한다.
속성 기반 감정 분석은 텍스트 내에서 감정과 해당 감정이 특정 속성, 예를 들어 제품의 특성이나 서비스의 특징에 어떻게 연결되는지를 분석하는 태스크이다. 본 논문에서는 속성 기반 감정 분석 데이터를 사용한 다중 작업-토큰 레이블링 문제에 프롬프트 튜닝 기법을 적용하기 위한 포괄적인 방법론을 소개한다. 이러한 방법론에는 토큰 레이블링 문제를 시퀀스 레이블링 문제로 일반화하기 위한 감정 표현 영역 검출 파이프라인이 포함된다. 또한 분리된 시퀀스들을 속성과 감정에 대해 분류 하기 위한 템플릿을 선정하고, 데이터셋 특성에 맞는 레이블 워드를 확장하는 방법을 제안함으써 모델의 성능을 최적화한다. 최종적으로, 퓨샷 세팅에서의 속성 기반 감정 분석 태스크에 대한 몇 가지 실험 결과와 분석을 제공한다. 구축된 데이터와 베이스라인 모델은 AIHUB(www.aihub.or.kr)에 공개되어 있다.
사례기반 추론은 과거의 사례를 기반으로 새로운 사례에 대한 답을 제시하는 기계학습의 한 분야이다. 과거의 사례는 일정한 형식으로 사례 베이스에 저장되는데, 저장의 형식을 결정하는 것이 속성이다. 속성은 사례의 특징을 가장 잘 표현할 수 있는 것들로 구성되며, 속성값간의 유사도 도출을 통해서 유사 사례를 검색하게 된다. 따라서, 사례기반 추론은 사용되는 속성에 따라서 성능이 달라지게 된다 본 연구에서는 먼저 속성을 하나씩만 사용하여 사례기반 추론을 수행하여 각 속성의 선택효과를 측정하고, 하나씩만 제거하고 사례기반 추론을 수행하여 각 속성의 제거효과를 측정하였다. 이 측정치들을 근거로 속성의 부분집합을 구성하여 사례기반 추론을 구현한 결과, 속성을 전부 사용했을 때보다 성능과 효율성이 우수한 사례기반 추론 시스템을 구축할 수 있었다.
기존 센서네트워크 환경의 노드들이 모바일 환경으로 바뀌면서 클러스터를 구축하고 클러스터 헤더를 선정함에 있어 기존 방법은 정적 노드를 대상으로 구축되어 있기 때문에 이를 동적 노드에 적합한 방법으로 구축하기 위해 기존 연속적인 스카이라인 질의방법을 이용하여 클러스터를 구축하고 클러스터헤더를 선정함으로 센서네트워크의 효율적인 환경을 구축하고자 한다. 기존은 클러스터 헤드 선정을 클러스터를 구축하고 구축된 클러스터 내에서 에너지 잔여량을 비교 하여 가장 에너지가 많은 노드를 헤드로 선정하여 라우팅을 고려하는 기법을 사용하였다. 그러나 센서 노드가 모바일 노드일 경우 위치도 함께 고려되어야 할 속성 중 하나일 것이다. 따라서 이 논문에서는 클러스터 헤더 선정기법에서 기존 방식과 달리 클러스터 헤더를 선정하고 클러스터 헤더를 선정하고 클러스터 헤더를 기준으로 R hop 까지를 하나의 클러스터로 설정하는 효율적인 영역 결정 기법을 제안하였다.
본 연구의 목적은 스크린골프장 이용고객의 라이프스타일이 선택속성과 고객만족 및 재구매행동과의 인과관계를 규명하고자 하는 것이다. 본 연구의 연구대상은 2010년 3월 1일부터 2010년4월 30일까지 약 2개월간 부산 경남지역에 소재하고 있는 스크린골프장 10곳의 이용고객을 모집단으로 선정하였으며, 한 곳당 40부씩 총 400부를 직접 업체를 방문하여 배포하고 최종 332명을 표집하였으며, 표본 추출방법은 편의표본추출법을 사용하였고 설문에 대한 응답은 자기평가기입법을 채택하였다. 이들 설문지 중 신뢰성이 떨어진다고 판단되는 42명의 설문지를 제외하고 총 290명을 유효 표본으로 선정하여 본 연구의 자료로 이용하였다. 본 연구에서는 SPSS Window 12.0 통계 패키지를 이용하여 요인분석과 신뢰도분석, 빈도 분석, 회귀분석을 실시하였다. 연구결과를 보면 다음과 같다. 첫째, 스크린골프장 이용고객의 라이프스타일이 선택속성에 유의한 영향을 미치는 것으로 나타났다. 둘째, 스크린골프장 이용고객의 선택속성은 고객만족에 유의한 영향을 미치는 것으로 나타났다. 셋째, 스크린골프장 이용고객의 선택속성은 재구매행동에 유의한 영향을 미치는 것으로 나타났다.
적지선정은 이용목적에 적합한 공간 또는 속성조건을 인자로 정하고 이를 만족하는 지역을 선정하는 것으로 체계적으로 수행되어야 한다. 본 연구는 계층적 분석과정과 GIS분석 모델링 방법을 이용하여 주거지 개발의 합리적인 적지선정을 시도한 것이다. 연구에서 적지선정을 위해 공간적 속성적 분석방법을 계층화하였으며 단계 별 효율적 결과도출을 위해 GIS분석 모델을 사용하였다. 다음 단계로, 적지선정 조건과 의사결정요소들을 유기적으로 고려하여 정량적 정성적인 평가지표를 만들고 요소들의 경중에 따라 가중치를 적용하였다. 특히, 주관적 평가요소인 경관에 대한 심미적인 요소를 반영하기 위해 3차원 지형모델의 시뮬레이션기법을 사용하였으며 계층적기법을 도입한 정성적인 평가요소로 고려하였다. 연구결과, 계층적 GIS모델분석으로 신속, 정확하게 복합적인 요구조건을 만족하는 적지를 선정할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.