• 제목/요약/키워드: 속성기반 감성 분석

검색결과 48건 처리시간 0.028초

다중 작업 학습의 단계적 특징을 활용한 한국어 속성 기반 감성 분석에서의 대상 추출 (Target extraction in Korean aspect-based sentiment analysis using stepwise feature of multi-task learning model)

  • 박호민;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.630-633
    • /
    • 2022
  • 속성기반 감성 분석은 텍스트 내에 존재하는 속성에 대해 세분화된 감성 분석을 수행하는 과제를 말한다. 세분화된 감성분석을 정확하게 수행하기 위해서는 텍스트에 존재하는 감성 표현과 그것이 수식하는 대상에 대한 정보가 반드시 필요하다. 그리고 순서대로 두 가지 정보는 이후 정보를 텍스트에서 추출하기 위해 중요한 단서가 된다. 따라서 본 논문에서는 KorBERT와 Bi-LSTM을 이용한 단계적 특징을 활용한 다중 작업 학습 모델을 사용하여 한국어 감성 분석 말뭉치의 감성 표현과 대상을 추출하는 작업을 수행하였다. 제안한 모델을 한국어 감성 분석 말뭉치로 학습 및 평가한 결과, 감성 표현 추출 작업의 출력을 추가적인 특성으로 전달하여 대상 추출 작업의 성능을 향상시킬 수 있음을 보였다.

  • PDF

감성 분석 화장품 사용자 리뷰에 대한 속성기반 감성분석 (Aspect-based Sentiment Analysis on Cosmetics Customer Reviews)

  • 정희원;정영섭
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.13-16
    • /
    • 2024
  • 온라인상에 인간의 감성을 담은 리뷰 데이터가 꾸준히 축적되어왔다. 이 텍스트 데이터를 분석하고 활용하는 일은 마케팅에 있어서 중요한 자산이 될 것이다. 이와 관련된 Aspect-Based Sentiment Analysis(ABSA) 연구는 한글에 있어서는 데이터 부족을 이유로 거의 선행연구가 없는 실정이다. 본 연구에서는 최근 공개된 데이터 셋을 바탕으로 하여 화장품 도메인에 대한 소비자들의 리뷰 텍스트와 사전 라벨링 된 속성, 감성 극성을 기반으로 ABSA를 진행한다. Klue RoBERTa base 모델을 활용하여 데이터를 학습시키고, Python Kiwipiepy 등으로 전처리한 결과를 대시보드로 시각화하여 분석하기 쉬운 환경을 마련하는 방법을 제시한다.

  • PDF

한국어 경제 도메인 텍스트 속성 기반 감성 분석을 위한 말뭉치 주석 요소 연구 (A study of Corpus Annotation for Aspect Based Sentiment Analysis of Korean financial texts)

  • 박서윤;장연지;강예지;강혜린;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.232-237
    • /
    • 2022
  • 본 논문에서는 미세 조정(fine-tuning) 및 비지도 학습 기법을 사용하여 경제 분야 텍스트인 금융 리포트에 대해 속성 기반 감성 분석(aspect-based sentiment analysis) 데이터셋을 반자동적으로 구축할 수 있는 방법론에 대한 연구를 수행하였다. 구축 시에는 속성기반 감성분석 주석 요소 중 극성, 속성 카테고리 정보를 부착하였으며, 미세조정과 비지도 학습 기법인 BERTopic을 통해 주석 요소를 자동적으로 부착하는 한편 이를 수동으로 검수하여 데이터셋의 완성도를 높이고자 하였다. 데이터셋에 대한 실험 결과, 극성 반자동 주석의 경우 기존에 구축된 데이터셋과 비슷한 수준의 성능을 보였다. 한편 정성적 분석을 통해 자동 구축을 동일하게 수행하였더라도 기술의 원리와 발달 정도에 따라 결과가 상이하게 달라짐을 관찰함으로써 경제 도메인의 ABSA 데이터셋 구축에 여전히 발전 여지가 있음을 확인할 수 있었다.

  • PDF

한글 정형화 방법에 기반한 상품평 감성분석의 제품 개발 적용 방법 연구 (A Study of Customer Review Analysis for Product Development based on Korean Language Processing)

  • 우제혁;정민규;이재현;서효원
    • 한국산업정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.49-62
    • /
    • 2022
  • 온라인 상품평 데이터는 제품의 특성에 대한 구체적인 평가를 담고 있으면서도 인터넷상에서 쉽게 수집할 수 있기에 제품의 장단점 및 긍정/부정 척도를 판단하기에 높은 효용 가치를 가진다. 기존의 감성 분석 연구들은 여러 문장으로 구성된 상품평 전체 단위의 감성 평가 방법을 제안하였다. 제품의 여러 속성별로 감성 평가 결과를 얻을 수 있으면 후속 제품 개발 과정에 유효한 입력이 될 수 있다. 본 논문에서는 제품의 속성 단위의 감성 분석을 하기 위해 상품평의 문장 단위로부터 제품 속성을 추출하여 감성 평가를 수행하는 방법을 제안한다. 먼저 양방향 LSTM과 조건부 무작위장(CRF)을 활용한 문장분석 모델을 통해 제품 속성과 감성어를 추출한다. 추출된 제품 속성별 감성 평가 결과는 본 논문에서 제안하는 감성 평가 규칙을 활용하여 계산된다. 제품 속성별 감성평가 결과는 품질 전개 기법에 적용되어 후속 제품 개발과정에 반영된다. 제안하는 방법론은 헤어드라이기 제품 사례를 통해 적정성을 보여준다.

다국어 사용자 후기에 대한 속성기반 감성분석 연구 (A study on the aspect-based sentiment analysis of multilingual customer reviews)

  • 지성영;이시윤;최대우;강기훈
    • 응용통계연구
    • /
    • 제36권6호
    • /
    • pp.515-528
    • /
    • 2023
  • 전자상거래 시장의 성장과 더불어 소비자들은 상품 및 서비스 구매 시 다른 사용자가 작성한 후기 정보에 기반하여 구매 의사를 결정하게 되며 이러한 후기를 효과적으로 분석하기 위한 연구가 활발히 이루어지고 있다. 특히, 사용자 후기에 대해 단순 긍/부정으로 감성분석하는 것이 아니라 다면적으로 분석하는 속성기반 감성분석 방법이 주목받고 있다. 속성기반 감성분석을 위한 다양한 방법론 중 최신 자연어 처리 기술인 트랜스포머 계열 모델을 활용한 분석 방법이 있다. 본 논문에서는 최신 자연어 처리 기술 모델에 두 가지 실제 데이터를 활용하여 다국어 사용자 후기에 대한 속성기반 감성분석을 진행하였다. 공개된 데이터 셋인 SemEval 2016의 Restaurant 데이터와 실제 화장품 도메인에서 작성된 다국어 사용자 후기 데이터를 활용하여 속성기반 감성분석을 위한 트랜스포머 계열 모델의 성능을 비교하였고 성능 향상을 위한 다양한 방법론도 적용하였다. 다국어 데이터를 활용한 모델을 통해 언어별로 별도의 모델을 구축하지 않고 한가지 모델로 다국어를 분석할 수 있다는 점에서 효용 가치가 클 것으로 예상된다.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.259-266
    • /
    • 2023
  • 본 논문에서는 속성기반 오피니언 마이닝(ABOM)을 적용한 협업 필터링의 정확도 성능을 개선할 수 있는 알고리즘을 제안한다. 실험을 위해 국내 스마트폰 사용자의 스마트폰 앱에 대한 총 1,227건의 온라인 소비자 리뷰 데이터가 분석에 사용되었다. KKMA(꼬꼬마)분석기를 이용하여 형태소 분석 및 KOSAC를 사용하여 감성어 분석 후 LDA 토픽 모델링을 사용하여 속성 추출한 가중치 값을 부여한 리뷰별로 토픽 모델링 결과를 이용하여 협업필터링의 평점과 감성스코어의 평점을 합산한 평균값 정확도 오차를 계산한 통계모형 성능 평가인 MAE, MAPE, RMSE를 사용하였다. 실험을 통해 추천 알고리즘 중 전통적인 협업필터링과 LDA 속성 추출과 감성분석을 결합한 속성기반 오피니언 마이닝(Aspect-Based Opinion Mining, ABOM) 기법을 결합하여 온라인 고객의 앱 평점(APP_Score) 대한 정확도를 예측하였다. 분석 결과 전통적인 협업필터링을 구현한 평점의 정확도 보다 속성기반 오피니언 마이닝 CF를 적용한 평점의 예측 정확도가 더 우수한 것으로 나타났다.

영화평 감성 분석기를 대상으로 한 설명자의 성능 분석 (Performance Analysis of Explainers for Sentiment Classifiers of Movie Reviews)

  • 박천용;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.563-568
    • /
    • 2020
  • 본 연구에서는 블랙박스로 알려진 딥러닝 모델에 설명 근거를 제공할 수 있는 설명자 모델을 적용해 보았다. 영화평 감성 분석을 위해 MLP, CNN으로 구성된 딥러닝 모델과 결정트리의 앙상블인 Gradient Boosting 모델을 이용하여 감성 분류기를 구축하였다. 설명자 모델로는 기울기(gradient)을 기반으로 하는 IG와 레이어 사이의 가중치(weight)을 기반으로 하는 CAM, 그리고 설명가능한 대리 모델을 이용하는 LIME과 입력 속성에 대한 선형모델을 추정하는 SHAP을 사용하였다. 설명자 모델의 특성을 보기 위하여 히트맵과 관련성 높은 N개의 속성을 추출해 보았다. 설명자가 제공하는 기여도에 따라 입력 속성을 제거해 가며 분류기 성능 변화를 측정하는 정량적 평가도 수행하였다. 또한, 사람의 판단 근거와의 일치도를 살펴볼 수 있는 '설명 근거 정확도'라는 새로운 평가 방법을 제안하여 적용해 보았다.

  • PDF

Car Audio의 소비자 감성요소 선호도 조사를 위한 웹 기반 컨조인트 분석 사레 연구 (A Case Study of conjoint Analysis based on WWW for Customer's Gamsung Factor Preference of car Audio System)

  • 박창민;오기태;이선영;이건표
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 추계학술대회 논문집
    • /
    • pp.171-177
    • /
    • 2000
  • 본 연구는 ‘문화적 미래형 감성디자인 개발’을 위한 Car AV시스템 개발 프로젝트의 일환으로서 기존 제품의 사용성 평가와 사용자 관찰 방법 등을 통해 사용 환경과 사용자의 이용 행태에 관해 조사하고, 특히 컨조인트 분석을 통해 사용자의 선호도에 주요한 영향을 미친 신뢰성 있는 속성을 규명하고자 하는데 목적이 있다. 컨조인트 분석 프로세스에서 추출된 독립적인 각각의 속성과 수준들의 조합안을 바탕으로 사용자 선호도 조사를 함으로써 궁극적으로는 최적의 속성과 수준의 조합안을 제시하고자 한다. 또한 컨조인트 분석을 위해서 인터넷을 이용한 조사 시스템 구축과 활용 과정에 대해 살펴봄으로써 이의 실질적인 활용과 문제점에 관해 고찰하고자 한다.

  • PDF

소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구 (Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis)

  • 강창민;어균선;이건창
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.1-19
    • /
    • 2022
  • 온라인 사용자들이 소셜 미디어상에 올린 온라인 리뷰 속 숨겨진 감정을 분석하는 감성분석은 소셜미디어의 확산에 힘입어 많은 관심을 받고 있다. 본 연구는 기존 연구들과 차별화된 방법으로 감성분석을 시도하기 위하여 베이지안 네트워크에 기반한 감성 분석 모델을 제안한다. 모델에는 MBFS(Markov Blanket-based Feature Selection)가 속성 선택 기법으로 사용된다. MBFS의 성과를 실증적으로 증명하기 위하여 소셜미디어인 Yelp의 리뷰 데이터를 활용하였다. 벤치마킹 속성 선택 기법으로는 상관관계기반 속성 선택, 정보획득 속성 선택, 획득비율 속성 선택을 사용하였다. 한편, 해당 속성선택방법을 토대로 4개의 머신러닝 알고리즘을 이용하여 분류성과를 비교하였다. 나아가 MBFS로 선택된 속성들 간 인과관계를 확인하고자 베이지안 네트워크를 통해 What-if 분석을 실시하였다. 본 연구에서 택한 머신러닝 분류기는 베이지안 네트워크 기반의 TAN (Tree Augmented Naive Bayes), NB (Naive Bayes), S-Spouses(Sons & Spouses), A-markov (Augmented Markov Blanket)이다. 성과분석 결과 본 연구에서 제안한 MBFS 방법이 정확도, 정밀도, F1점수 측면에서 벤치마킹 방법보다 더 우수한 성과를 나타내었다.

Multicriteria Movie Recommendation Model Combining Aspect-based Sentiment Classification Using BERT

  • Lee, Yurin;Ahn, Hyunchul
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.201-207
    • /
    • 2022
  • 본 논문에서는 영화 추천 시 평점뿐 아니라 사용자 리뷰도 함께 사용하는 영화 추천 모형을 제안한다. 제안 모형은 고객의 선호도를 다기준 관점에서 이해하기 위해, 사용자 리뷰에 속성기반 감성분석을 적용하도록 설계되었다. 이를 위해, 제안 모형은 고객이 남긴 리뷰를 다기준 속성별로 나누어 암시적 속성을 파악하고, BERT를 통해 이를 감성 분석함으로써 각 사용자가 중요시 생각하는 속성을 선별적으로 협업필터링에 결합하여 추천 결과를 생성한다. 본 연구에서는 유용성을 검증하기 위해 제안모형을 실제 영화 추천 사례에 적용해 보았다. 실험결과 전통적인 협업필터링 보다 제안 모형의 추천 정확도가 향상되는 것을 확인할 수 있었다. 본 연구는 개인의 특성을 고려하여 모형을 선별하여 사용하는 새로운 접근법을 제시하였고, 속성 각각에 대한 평가 없이 리뷰로부터 여러 속성을 파악할 수 있는 방법을 제시했다는 측면에서 학술적, 실무적 의의가 있다.